Counting, permutations, and combinations

permutations example:

A,B,C,D,E1,2,3,4,5A, B, C, D, E \longrightarrow 1, 2, 3, 4, 5

Permutations: 5!=54321=120 5! = 5 * 4 * 3 * 2 * 1 = 120

where 5!5!stands for 5factorial5 factorial.

A,B,C,D,E1,2,3A, B, C, D, E \longrightarrow 1, 2, 3

Permutations: 543=60=5432121=5!2!=5!(53)!5 * 4 * 3 = 60 = \frac{5*4*3*2*1}{2*1} = \frac{5!}{2!} = \frac{5!}{(5-3)!}

Factorial

n!=n(n1)(n2)...13!=3212!=211!=10!=1n! = n * (n-1)*(n-2)...1 \newline 3! = 3*2*1 \newline 2! = 2*1\newline 1!=1 \newline 0!=1

Permutation formula:  nPk=n!(nk)!\text{Permutation formula:}\ \ _nP_k = \frac{n!}{(n-k)!}

Combination formula:  nCk=n!(nk)!k!=n!k!(nk)!=(nk)\text{Combination formula:} \ \ _nC_k=\frac{\frac{n!}{(n-k)!}}{k!} = \frac{n!}{k!(n-k)!}=\binom{n}{k}

example:

A,B,C,D,E,F(people)1,2,3,4(chairs)A, B, C, D, E, F \text{(people)}\longrightarrow 1, 2, 3, 4 \text{(chairs)}

6C4=(64)=6!4!(64)!=614!2!=6543214321    21=15_6 C_4=\binom{6}{4} =\frac{6!}{4! (6-4)!} =\frac{61}{4!*2!}=\frac{6*5*4*3*2*1}{4*3*2*1\ \ *\ \ 2*1}= 15

You will have 360 permutations, verses 15 combinations.

How many ways to choose 2 from A,B,C,DA, B, C, D

4C2=(42)=432=6_4 C_2 = \binom{4}{2} = \frac{4*3}{2} = 6

Another way to write this is (53)\binom{5}{3}, or 55 choose 33, which is 1010.

Last updated