permutations example:
A,B,C,D,E⟶1,2,3,4,5
Permutations: 5!=5∗4∗3∗2∗1=120
where 5!stands for 5factorial.
A,B,C,D,E⟶1,2,3
Permutations: 5∗4∗3=60=2∗15∗4∗3∗2∗1=2!5!=(5−3)!5!
Factorial
n!=n∗(n−1)∗(n−2)...13!=3∗2∗12!=2∗11!=10!=1
Permutation formula: nPk=(n−k)!n!
Combination formula: nCk=k!(n−k)!n!=k!(n−k)!n!=(kn)
example:
A,B,C,D,E,F(people)⟶1,2,3,4(chairs)
6C4=(46)=4!(6−4)!6!=4!∗2!61=4∗3∗2∗1 ∗ 2∗16∗5∗4∗3∗2∗1=15
You will have 360 permutations, verses 15 combinations.
How many ways to choose 2 from A,B,C,D
4C2=(24)=24∗3=6
Another way to write this is (35), or 5 choose 3, which is 10.