scrapbook
  • "Unorganized" Notes
  • The Best Public Datasets for Machine Learning and Data Science
  • Practice Coding
  • plaid-API project
  • Biotech
    • Machine Learning vs. Deep Learning
  • Machine Learning for Computer Graphics
  • Books (on GitHub)
  • Ideas/Thoughts
  • Ziva for feature animation: Stylized simulation and machine learning-ready workflows
  • Tools
  • đŸĒļmath
    • Papers
    • Math for ML (coursera)
      • Linear Algebra
        • Wk1
        • Wk2
        • Wk3
        • Wk4
        • Wk5
      • Multivariate Calculus
    • Improving your Algorithms & Data Structure Skills
    • Algorithms
    • Algorithms (MIT)
      • Lecture 1: Algorithmic Thinking, Peak Finding
    • Algorithms (khan academy)
      • Binary Search
      • Asymptotic notation
      • Sorting
      • Insertion sort
      • Recursion
      • Solve Hanoi recursively
      • Merge Sort
      • Representing graphs
      • The breadth-first search algorithm
      • Breadth First Search in JavaScript
      • Breadth-first vs Depth-first Tree Traversal in Javascript
    • Algorithms (udacity)
      • Social Network
    • Udacity
      • Linear Algebra Refresher /w Python
    • math-notes
      • functions
      • differential calculus
      • derivative
      • extras
      • Exponentials & logarithms
      • Trigonometry
    • Probability (MIT)
      • Unit 1
        • Probability Models and Axioms
        • Mathematical background: Sets; sequences, limits, and series; (un)countable sets.
    • Statistics and probability (khan academy)
      • Analyzing categorical data
      • Describing and comparing distributions
      • Outliers Definition
      • Mean Absolute Deviation (MAD)
      • Modeling data distribution
      • Exploring bivariate numerical data
      • Study Design
      • Probability
      • Counting, permutations, and combinations
      • Binomial variables
        • Binomial Distribution
        • Binomial mean and standard deviation formulas
        • Geometric random variable
      • Central Limit Theorem
      • Significance Tests (hypothesis testing)
    • Statistics (hackerrank)
      • Mean, Medium, Mode
      • Weighted Mean
      • Quartiles
      • Standard Deviation
      • Basic Probability
      • Conditional Probability
      • Permutations & Combinations
      • Binomial Distribution
      • Negative Binomial
      • Poisson Distribution
      • Normal Distribution
      • Central Limit Theorem
      • Important Concepts in Bayesian Statistics
  • đŸ“Ŋī¸PRODUCT
    • Product Strategy
    • Product Design
    • Product Development
    • Product Launch
  • 👨‍đŸ’ģcoding
    • of any interest
    • Maya API
      • Python API
    • Python
      • Understanding Class Inheritance in Python 3
      • 100+ Python challenging programming exercises
      • coding
      • Iterables vs. Iterators vs. Generators
      • Generator Expression
      • Stacks (LIFO) / Queues (FIFO)
      • What does -1 mean in numpy reshape?
      • Fold Left and Right in Python
      • Flatten a nested list of lists
      • Flatten a nested dictionary
      • Traverse A Tree
      • How to Implement Breadth-First Search
      • Breadth First Search
        • Level Order Tree Traversal
        • Breadth First Search or BFS for a Graph
        • BFS for Disconnected Graph
      • Trees and Tree Algorithms
      • Graph and its representations
      • Graph Data Structure Interview Questions
      • Graphs in Python
      • GitHub Repo's
    • Python in CG Production
    • GLSL/HLSL Shading programming
    • Deep Learning Specialization
      • Neural Networks and Deep Learning
      • Untitled
      • Untitled
      • Untitled
    • TensorFlow for AI, ML, and DL
      • Google ML Crash Course
      • TensorFlow C++ API
      • TensorFlow - coursera
      • Notes
      • An Introduction to different Types of Convolutions in Deep Learning
      • One by One [ 1 x 1 ] Convolution - counter-intuitively useful
      • SqueezeNet
      • Deep Compression
      • An Overview of ResNet and its Variants
      • Introducing capsule networks
      • What is a CapsNet or Capsule Network?
      • Xception
      • TensorFlow Eager
    • GitHub
      • Project README
    • Agile - User Stories
    • The Open-Source Data Science Masters
    • Coding Challenge Websites
    • Coding Interview
      • leetcode python
      • Data Structures
        • Arrays
        • Linked List
        • Hash Tables
        • Trees: Basic
        • Heaps, Stacks, Queues
        • Graphs
          • Shortest Path
      • Sorting & Searching
        • Depth-First Search & Breadth-First Search
        • Backtracking
        • Sorting
      • Dynamic Programming
        • Dynamic Programming: Basic
        • Dynamic Programming: Advanced
    • spaCy
    • Pandas
    • Python Packages
    • Julia
      • jupyter
    • macos
    • CPP
      • Debugging
      • Overview of memory management problems
      • What are lvalues and rvalues?
      • The Rule of Five
      • Concurrency
      • Avoiding Data Races
      • Mutex
      • The Monitor Object Pattern
      • Lambdas
      • Maya C++ API Programming Tips
      • How can I read and parse CSV files in C++?
      • Cpp NumPy
    • Advanced Machine Learning
      • Wk 1
      • Untitled
      • Untitled
      • Untitled
      • Untitled
  • data science
    • Resources
    • Tensorflow C++
    • Computerphile
      • Big Data
    • Google ML Crash Course
    • Kaggle
      • Data Versioning
      • The Basics of Rest APIs
      • How to Make an API
      • How to deploying your API
    • Jupiter Notebook Tips & Tricks
      • Jupyter
    • Image Datasets Notes
    • DS Cheatsheets
      • Websites & Blogs
      • Q&A
      • Strata
      • Data Visualisation
      • Matplotlib etc
      • Keras
      • Spark
      • Probability
      • Machine Learning
        • Fast Computation of AUC-ROC score
    • Data Visualisation
    • fast.ai
      • deep learning
      • How to work with Jupyter Notebook on a remote machine (Linux)
      • Up and Running With Fast.ai and Docker
      • AWS
    • Data Scientist
    • ML for Beginners (Video)
    • ML Mastery
      • Machine Learning Algorithms
      • Deep Learning With Python
    • Linear algebra cheat sheet for deep learning
    • DL_ML_Resources
    • Awesome Machine Learning
    • web scraping
    • SQL Style Guide
    • SQL - Tips & Tricks
  • 💡Ideas & Thoughts
    • Outdoors
    • Blog
      • markdown
      • How to survive your first day as an On-set VFX Supervisor
    • Book Recommendations by Demi Lee
  • career
    • Skills
    • learn.co
      • SQL
      • Distribution
      • Hypothesis Testing Glossary
      • Hypothesis Tests
      • Hypothesis & AB Testing
      • Combinatorics Continued and Maximum Likelihood Estimation
      • Bayesian Classification
      • Resampling and Monte Carlo Simulation
      • Extensions To Linear Models
      • Time Series
      • Distance Metrics
      • Graph Theory
      • Logistic Regression
      • MLE (Maximum Likelihood Estimation)
      • Gradient Descent
      • Decision Trees
      • Ensemble Methods
      • Spark
      • Machine Learning
      • Deep Learning
        • Backpropagation - math notation
        • PRACTICE DATASETS
        • Big Data
      • Deep Learning Resources
      • DL Datasets
      • DL Tutorials
      • Keras
      • Word2Vec
        • Word2Vec Tutorial Part 1 - The Skip-Gram Model
        • Word2Vec Tutorial Part 2 - Negative Sampling
        • An Intuitive Explanation of Convolutional Neural Networks
      • Mod 4 Project
        • Presentation
      • Mod 5 Project
      • Capstone Project Notes
        • Streaming large training and test files into Tensorflow's DNNClassifier
    • Carrier Prep
      • The Job Search
        • Building a Strong Job Search Foundation
        • Key Traits of Successful Job Seekers
        • Your Job Search Mindset
        • Confidence
        • Job Search Action Plan
        • CSC Weekly Activity
        • Managing Your Job Search
      • Your Online Presence
        • GitHub
      • Building Your Resume
        • Writing Your Resume Summary
        • Technical Experience
      • Effective Networking
        • 30 Second Elevator Pitch
        • Leveraging Your Network
        • Building an Online Network
        • Linkedin For Research And Networking
        • Building An In-Person Network
        • Opening The Line Of Communication
      • Applying to Jobs
        • Applying To Jobs Online
        • Cover Letters
      • Interviewing
        • Networking Coffees vs Formal Interviews
        • The Coffee Meeting/ Informational Interview
        • Communicating With Recruiters And HR Professional
        • Research Before an Interview
        • Preparing Questions for Interviews
        • Phone And Video/Virtual Interviews
        • Cultural/HR Interview Questions
        • The Salary Question
        • Talking About Apps/Projects You Built
        • Sending Thank You's After an Interview
      • Technical Interviewing
        • Technical Interviewing Formats
        • Code Challenge Best Practices
        • Technical Interviewing Resources
      • Communication
        • Following Up
        • When You Haven't Heard From an Employer
      • Job Offers
        • Approaching Salary Negotiations
      • Staying Current in the Tech Industry
      • Module 6 Post Work
      • Interview Prep
  • projects
    • Text Classification
    • TERRA-REF
    • saildrone
  • Computer Graphics
  • AI/ML
  • 3deeplearning
    • Fast and Deep Deformation Approximations
    • Compress and Denoise MoCap with Autoencoders
    • ‘Fast and Deep Deformation Approximations’ Implementation
    • Running a NeuralNet live in Maya in a Python DG Node
    • Implement a Substance like Normal Map Generator with a Convolutional Network
    • Deploying Neural Nets to the Maya C++ API
  • Tools/Plugins
  • AR/VR
  • Game Engine
  • Rigging
    • Deformer Ideas
    • Research
    • brave rabbit
    • Useful Rigging Links
  • Maya
    • Optimizing Node Graph for Parallel Evaluation
  • Houdini
    • Stuff
    • Popular Built-in VEX Attributes (Global Variables)
Powered by GitBook
On this page
  1. coding
  2. CPP

How can I read and parse CSV files in C++?

https://stackoverflow.com/questions/1120140/how-can-i-read-and-parse-csv-files-in-c

If you don't care about escaping comma and newline, AND you can't embed comma and newline in quotes (If you can't escape then...) then its only about three lines of code (OK 14 ->But its only 15 to read the whole file).

std::vector<std::string> getNextLineAndSplitIntoTokens(std::istream& str)
{
    std::vector<std::string>   result;
    std::string                line;
    std::getline(str,line);

    std::stringstream          lineStream(line);
    std::string                cell;

    while(std::getline(lineStream,cell, ','))
    {
        result.push_back(cell);
    }
    // This checks for a trailing comma with no data after it.
    if (!lineStream && cell.empty())
    {
        // If there was a trailing comma then add an empty element.
        result.push_back("");
    }
    return result;
}

I would just create a class representing a row. Then stream into that object:

#include <iterator>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>

class CSVRow
{
    public:
        std::string_view operator[](std::size_t index) const
        {
            return std::string_view(&m_line[m_data[index] + 1], m_data[index + 1] -  (m_data[index] + 1));
        }
        std::size_t size() const
        {
            return m_data.size() - 1;
        }
        void readNextRow(std::istream& str)
        {
            std::getline(str, m_line);

            m_data.clear();
            m_data.emplace_back(-1);
            std::string::size_type pos = 0;
            while((pos = m_line.find(',', pos)) != std::string::npos)
            {
                m_data.emplace_back(pos);
                ++pos;
            }
            // This checks for a trailing comma with no data after it.
            pos   = m_line.size();
            m_data.emplace_back(pos);
        }
    private:
        std::string         m_line;
        std::vector<int>    m_data;
};

std::istream& operator>>(std::istream& str, CSVRow& data)
{
    data.readNextRow(str);
    return str;
}   
int main()
{
    std::ifstream       file("plop.csv");

    CSVRow              row;
    while(file >> row)
    {
        std::cout << "4th Element(" << row[3] << ")\n";
    }
}

But with a little work we could technically create an iterator:

class CSVIterator
{   
    public:
        typedef std::input_iterator_tag     iterator_category;
        typedef CSVRow                      value_type;
        typedef std::size_t                 difference_type;
        typedef CSVRow*                     pointer;
        typedef CSVRow&                     reference;

        CSVIterator(std::istream& str)  :m_str(str.good()?&str:NULL) { ++(*this); }
        CSVIterator()                   :m_str(NULL) {}

        // Pre Increment
        CSVIterator& operator++()               {if (m_str) { if (!((*m_str) >> m_row)){m_str = NULL;}}return *this;}
        // Post increment
        CSVIterator operator++(int)             {CSVIterator    tmp(*this);++(*this);return tmp;}
        CSVRow const& operator*()   const       {return m_row;}
        CSVRow const* operator->()  const       {return &m_row;}

        bool operator==(CSVIterator const& rhs) {return ((this == &rhs) || ((this->m_str == NULL) && (rhs.m_str == NULL)));}
        bool operator!=(CSVIterator const& rhs) {return !((*this) == rhs);}
    private:
        std::istream*       m_str;
        CSVRow              m_row;
};


int main()
{
    std::ifstream       file("plop.csv");

    for(CSVIterator loop(file); loop != CSVIterator(); ++loop)
    {
        std::cout << "4th Element(" << (*loop)[3] << ")\n";
    }
}

Now that we are in 2020 lets add a CSVRange object:

class CSVRange
{
    std::istream&   stream;
    public:
        CSVRange(std::istream& str) : stream(str) {}
        CSVIterator begin() const {return CSVIterator{stream};}
        CSVIterator end()   const {return CSVIterator{};}
};

int main()
{
    std::ifstream       file("plop.csv");

    for(auto& row: CSVRange(file))
    {
        std::cout << "4th Element(" << row[3] << ")\n";
    }
}
PreviousMaya C++ API Programming TipsNextCpp NumPy

Last updated 4 years ago

👨‍đŸ’ģ