scrapbook
  • "Unorganized" Notes
  • The Best Public Datasets for Machine Learning and Data Science
  • Practice Coding
  • plaid-API project
  • Biotech
    • Machine Learning vs. Deep Learning
  • Machine Learning for Computer Graphics
  • Books (on GitHub)
  • Ideas/Thoughts
  • Ziva for feature animation: Stylized simulation and machine learning-ready workflows
  • Tools
  • 🪶math
    • Papers
    • Math for ML (coursera)
      • Linear Algebra
        • Wk1
        • Wk2
        • Wk3
        • Wk4
        • Wk5
      • Multivariate Calculus
    • Improving your Algorithms & Data Structure Skills
    • Algorithms
    • Algorithms (MIT)
      • Lecture 1: Algorithmic Thinking, Peak Finding
    • Algorithms (khan academy)
      • Binary Search
      • Asymptotic notation
      • Sorting
      • Insertion sort
      • Recursion
      • Solve Hanoi recursively
      • Merge Sort
      • Representing graphs
      • The breadth-first search algorithm
      • Breadth First Search in JavaScript
      • Breadth-first vs Depth-first Tree Traversal in Javascript
    • Algorithms (udacity)
      • Social Network
    • Udacity
      • Linear Algebra Refresher /w Python
    • math-notes
      • functions
      • differential calculus
      • derivative
      • extras
      • Exponentials & logarithms
      • Trigonometry
    • Probability (MIT)
      • Unit 1
        • Probability Models and Axioms
        • Mathematical background: Sets; sequences, limits, and series; (un)countable sets.
    • Statistics and probability (khan academy)
      • Analyzing categorical data
      • Describing and comparing distributions
      • Outliers Definition
      • Mean Absolute Deviation (MAD)
      • Modeling data distribution
      • Exploring bivariate numerical data
      • Study Design
      • Probability
      • Counting, permutations, and combinations
      • Binomial variables
        • Binomial Distribution
        • Binomial mean and standard deviation formulas
        • Geometric random variable
      • Central Limit Theorem
      • Significance Tests (hypothesis testing)
    • Statistics (hackerrank)
      • Mean, Medium, Mode
      • Weighted Mean
      • Quartiles
      • Standard Deviation
      • Basic Probability
      • Conditional Probability
      • Permutations & Combinations
      • Binomial Distribution
      • Negative Binomial
      • Poisson Distribution
      • Normal Distribution
      • Central Limit Theorem
      • Important Concepts in Bayesian Statistics
  • 📽️PRODUCT
    • Product Strategy
    • Product Design
    • Product Development
    • Product Launch
  • 👨‍💻coding
    • of any interest
    • Maya API
      • Python API
    • Python
      • Understanding Class Inheritance in Python 3
      • 100+ Python challenging programming exercises
      • coding
      • Iterables vs. Iterators vs. Generators
      • Generator Expression
      • Stacks (LIFO) / Queues (FIFO)
      • What does -1 mean in numpy reshape?
      • Fold Left and Right in Python
      • Flatten a nested list of lists
      • Flatten a nested dictionary
      • Traverse A Tree
      • How to Implement Breadth-First Search
      • Breadth First Search
        • Level Order Tree Traversal
        • Breadth First Search or BFS for a Graph
        • BFS for Disconnected Graph
      • Trees and Tree Algorithms
      • Graph and its representations
      • Graph Data Structure Interview Questions
      • Graphs in Python
      • GitHub Repo's
    • Python in CG Production
    • GLSL/HLSL Shading programming
    • Deep Learning Specialization
      • Neural Networks and Deep Learning
      • Untitled
      • Untitled
      • Untitled
    • TensorFlow for AI, ML, and DL
      • Google ML Crash Course
      • TensorFlow C++ API
      • TensorFlow - coursera
      • Notes
      • An Introduction to different Types of Convolutions in Deep Learning
      • One by One [ 1 x 1 ] Convolution - counter-intuitively useful
      • SqueezeNet
      • Deep Compression
      • An Overview of ResNet and its Variants
      • Introducing capsule networks
      • What is a CapsNet or Capsule Network?
      • Xception
      • TensorFlow Eager
    • GitHub
      • Project README
    • Agile - User Stories
    • The Open-Source Data Science Masters
    • Coding Challenge Websites
    • Coding Interview
      • leetcode python
      • Data Structures
        • Arrays
        • Linked List
        • Hash Tables
        • Trees: Basic
        • Heaps, Stacks, Queues
        • Graphs
          • Shortest Path
      • Sorting & Searching
        • Depth-First Search & Breadth-First Search
        • Backtracking
        • Sorting
      • Dynamic Programming
        • Dynamic Programming: Basic
        • Dynamic Programming: Advanced
    • spaCy
    • Pandas
    • Python Packages
    • Julia
      • jupyter
    • macos
    • CPP
      • Debugging
      • Overview of memory management problems
      • What are lvalues and rvalues?
      • The Rule of Five
      • Concurrency
      • Avoiding Data Races
      • Mutex
      • The Monitor Object Pattern
      • Lambdas
      • Maya C++ API Programming Tips
      • How can I read and parse CSV files in C++?
      • Cpp NumPy
    • Advanced Machine Learning
      • Wk 1
      • Untitled
      • Untitled
      • Untitled
      • Untitled
  • data science
    • Resources
    • Tensorflow C++
    • Computerphile
      • Big Data
    • Google ML Crash Course
    • Kaggle
      • Data Versioning
      • The Basics of Rest APIs
      • How to Make an API
      • How to deploying your API
    • Jupiter Notebook Tips & Tricks
      • Jupyter
    • Image Datasets Notes
    • DS Cheatsheets
      • Websites & Blogs
      • Q&A
      • Strata
      • Data Visualisation
      • Matplotlib etc
      • Keras
      • Spark
      • Probability
      • Machine Learning
        • Fast Computation of AUC-ROC score
    • Data Visualisation
    • fast.ai
      • deep learning
      • How to work with Jupyter Notebook on a remote machine (Linux)
      • Up and Running With Fast.ai and Docker
      • AWS
    • Data Scientist
    • ML for Beginners (Video)
    • ML Mastery
      • Machine Learning Algorithms
      • Deep Learning With Python
    • Linear algebra cheat sheet for deep learning
    • DL_ML_Resources
    • Awesome Machine Learning
    • web scraping
    • SQL Style Guide
    • SQL - Tips & Tricks
  • 💡Ideas & Thoughts
    • Outdoors
    • Blog
      • markdown
      • How to survive your first day as an On-set VFX Supervisor
    • Book Recommendations by Demi Lee
  • career
    • Skills
    • learn.co
      • SQL
      • Distribution
      • Hypothesis Testing Glossary
      • Hypothesis Tests
      • Hypothesis & AB Testing
      • Combinatorics Continued and Maximum Likelihood Estimation
      • Bayesian Classification
      • Resampling and Monte Carlo Simulation
      • Extensions To Linear Models
      • Time Series
      • Distance Metrics
      • Graph Theory
      • Logistic Regression
      • MLE (Maximum Likelihood Estimation)
      • Gradient Descent
      • Decision Trees
      • Ensemble Methods
      • Spark
      • Machine Learning
      • Deep Learning
        • Backpropagation - math notation
        • PRACTICE DATASETS
        • Big Data
      • Deep Learning Resources
      • DL Datasets
      • DL Tutorials
      • Keras
      • Word2Vec
        • Word2Vec Tutorial Part 1 - The Skip-Gram Model
        • Word2Vec Tutorial Part 2 - Negative Sampling
        • An Intuitive Explanation of Convolutional Neural Networks
      • Mod 4 Project
        • Presentation
      • Mod 5 Project
      • Capstone Project Notes
        • Streaming large training and test files into Tensorflow's DNNClassifier
    • Carrier Prep
      • The Job Search
        • Building a Strong Job Search Foundation
        • Key Traits of Successful Job Seekers
        • Your Job Search Mindset
        • Confidence
        • Job Search Action Plan
        • CSC Weekly Activity
        • Managing Your Job Search
      • Your Online Presence
        • GitHub
      • Building Your Resume
        • Writing Your Resume Summary
        • Technical Experience
      • Effective Networking
        • 30 Second Elevator Pitch
        • Leveraging Your Network
        • Building an Online Network
        • Linkedin For Research And Networking
        • Building An In-Person Network
        • Opening The Line Of Communication
      • Applying to Jobs
        • Applying To Jobs Online
        • Cover Letters
      • Interviewing
        • Networking Coffees vs Formal Interviews
        • The Coffee Meeting/ Informational Interview
        • Communicating With Recruiters And HR Professional
        • Research Before an Interview
        • Preparing Questions for Interviews
        • Phone And Video/Virtual Interviews
        • Cultural/HR Interview Questions
        • The Salary Question
        • Talking About Apps/Projects You Built
        • Sending Thank You's After an Interview
      • Technical Interviewing
        • Technical Interviewing Formats
        • Code Challenge Best Practices
        • Technical Interviewing Resources
      • Communication
        • Following Up
        • When You Haven't Heard From an Employer
      • Job Offers
        • Approaching Salary Negotiations
      • Staying Current in the Tech Industry
      • Module 6 Post Work
      • Interview Prep
  • projects
    • Text Classification
    • TERRA-REF
    • saildrone
  • Computer Graphics
  • AI/ML
  • 3deeplearning
    • Fast and Deep Deformation Approximations
    • Compress and Denoise MoCap with Autoencoders
    • ‘Fast and Deep Deformation Approximations’ Implementation
    • Running a NeuralNet live in Maya in a Python DG Node
    • Implement a Substance like Normal Map Generator with a Convolutional Network
    • Deploying Neural Nets to the Maya C++ API
  • Tools/Plugins
  • AR/VR
  • Game Engine
  • Rigging
    • Deformer Ideas
    • Research
    • brave rabbit
    • Useful Rigging Links
  • Maya
    • Optimizing Node Graph for Parallel Evaluation
  • Houdini
    • Stuff
    • Popular Built-in VEX Attributes (Global Variables)
Powered by GitBook
On this page
  • What are the inverse trigonometric functions?
  • Range of the inverse trig functions
  • Inverse Trig Function Ranges
  • Inverse Trigonometric Functions Calculator
  • Quiz's
  • Select one or more expressions that together represent all solutions to the equation. Your answer should be in radians.
  • Solve the equation in the interval from to . Your answer should be in degrees.
  • Solutions
  • Degree
  • Radian
  1. math
  2. math-notes

Trigonometry

https://en.wikipedia.org/wiki/Trigonometry

PreviousExponentials & logarithmsNextProbability (MIT)

Last updated 5 years ago

g(x)=tan(x−3π2)+6x=tan(g−1(x)−3π2)+6x−6=tan(g−1(x)−3π2)tan−1(x−6)=g−1(x)−3π2g−1(x)=tan−1(x−6)+3π2\begin{aligned}g(x)&=tan(x -\frac{3\pi}{2})+6 \\\\ x &= tan(g^{-1}(x) -\frac{3\pi}{2})+6 \\\\x - 6 &= tan(g^{-1}(x) -\frac{3\pi}{2}) \\\\tan^{-1}(x-6) &= g^{-1}(x) -\frac{3\pi}{2} \\\\ g^{-1}(x) &= tan^{-1}(x-6)+\frac{3\pi}{2}\end{aligned}g(x)xx−6tan−1(x−6)g−1(x)​=tan(x−23π​)+6=tan(g−1(x)−23π​)+6=tan(g−1(x)−23π​)=g−1(x)−23π​=tan−1(x−6)+23π​​

tantantan

domain

range

all reals

all reals

tan−1tan^{-1}tan−1

domain

range

all reals

What are the inverse trigonometric functions?

arcsin⁡(x),orsin⁡−1(x)\arcsin(x), \text{or} \sin^{-1}(x)arcsin(x),orsin−1(x), is the inverse of sin⁡(x)\sin(x)sin(x).

arccos⁡(x),orcos⁡−1(x)\arccos(x), \text{or} \cos^{-1}(x)arccos(x),orcos−1(x), is the inverse of cos⁡(x)\cos(x)cos(x).

arctan⁡(x),ortan⁡−1(x)\arctan(x), \text{or} \tan^{-1}(x)arctan(x),ortan−1(x), is the inverse of tan⁡(x)\tan(x)tan(x).

Range of the inverse trig functions

Radians

Degrees

The trigonometric functions aren't really invertible, because they have multiple inputs that have the same output. For example, sin⁡(0)=sin⁡(π)=0sin(0)\sin(0)=\sin(\pi)=0sin(0)sin(0)=sin(π)=0sin(0). So what should be sin⁡−1(0)\sin^{-1}(0)sin−1(0)?

In order to define the inverse functions, we have to restrict the domain of the original functions to an interval where they are invertible. These domains determine the range of the inverse functions.

The value from the appropriate range that an inverse function returns is called the principal value of the function.

The sine value of all options is 0.980.980.98. Which is the principal value of arcsin⁡(0.98)\arcsin\left(0.98\right)arcsin(0.98)?

The only measure out of the options that is within the interval [−π2,π2]\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right][−2π​,2π​] is 1.3711.3711.371.

Therefore, arcsin⁡(0.98)=1.37\arcsin\left(0.98\right)=1.37arcsin(0.98)=1.37.

The cosine value of all options is 0.320.320.32. Which is the principal value of cos⁡−1(0.32)\cos^{-1}\left(0.32\right)cos−1(0.32)?

The only measure out of the options that is within the interval [0,π]\left[0,\pi\right][0,π] is 1.251.251.25.

Therefore, cos⁡−1(0.32)=1.25\cos^{-1}\left(0.32\right)=1.25cos−1(0.32)=1.25.

The tangent value of all options is −21-21−21. Which is the principal value of tan⁡−1(−21)\tan^{-1}\left(-21\right)tan−1(−21)?

The only measure out of the options that is within the interval (−π2,π2)\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)(−2π​,2π​) is −1.52-1.52−1.52.

Therefore, tan⁡−1(−21)=−1.52\tan^{-1}\left(-21\right)=-1.52tan−1(−21)=−1.52.

Inverse Trig Function Ranges

Function Name

Function Abbreviations

Range of Principal Values

Arcsine

Arccosine

Arctangent

Arccotangent

Arcsecant

Arccosecant

Note: If we have a y=cosθy = cos\thetay=cosθ and move to the right we are going counter clockwise around the unit circle and visa versa.

So,

cosθ=1 ⇒2πn⟹we can also write it as 0,2π,4π,6π,...cosθ=−1⇒2πn+π⟹−π,π,3π,5π,...cos\theta = 1 \ \Rightarrow 2\pi n \Longrightarrow \text{we can also write it as }0, 2\pi, 4\pi, 6\pi,... \newline cos\theta = -1 \Rightarrow 2\pi n + \pi \Longrightarrow -\pi, \pi, 3\pi, 5\pi,...cosθ=1 ⇒2πn⟹we can also write it as 0,2π,4π,6π,...cosθ=−1⇒2πn+π⟹−π,π,3π,5π,...

Quiz's

Select one or more expressions that together represent all solutions to the equation. Your answer should be in radians.

cos(x)=−0.1cos(x)=−0.1cos(x)=−0.1

Finding all solutions within −π<x<π-\pi<x<\pi−π<x<π

Let's use the calculator and round to the nearest hundredth.

cos⁡−1(−0.1)=1.67\cos^{-1}(-0.1)=1.67cos−1(−0.1)=1.67

Now we can use the identity cos⁡(θ)=cos⁡(−θ)\cos(\theta)=\cos(-\theta)cos(θ)=cos(−θ) to find that the second solution within the interval is −1.67-1.67−1.67

Extending to all solutions

We use the identity cos⁡(θ)=cos⁡(θ+2π)\cos(\theta)=\cos(\theta+2\pi)cos(θ)=cos(θ+2π)to extend the two solutions we found to all solutions.

x=−1.67+n⋅2πx=-1.67+n\cdot2\pix=−1.67+n⋅2π

x=1.67+n⋅2πx=1.67+n\cdot2\pix=1.67+n⋅2π

Solve the equation in the interval from 180∘180^\circ180∘ to 720∘720^\circ720∘. Your answer should be in degrees.

cos(x)=−0.4cos(x)=−0.4 cos(x)=−0.4

Finding all solutions within −180∘<x≤180∘-180^\circ<x\leq180^\circ−180∘<x≤180∘

Let's use the calculator and round to the nearest hundredth.

cos⁡−1(−0.4)=113.58∘\cos^{-1}(-0.4)=113.58^\circcos−1(−0.4)=113.58∘

Now we can use the identity cos⁡(θ)=cos⁡(−θ)\cos(\theta)=\cos(-\theta)cos(θ)=cos(−θ) to find that the second solution within the interval is −113.58∘-113.58^\circ−113.58∘.

Finding the set of possible solutions

We use the identity cos⁡(θ)=cos⁡(θ+360∘)\cos(\theta)=\cos(\theta+360^\circ)cos(θ)=cos(θ+360∘) to extend the two solutions we found to all solutions.

x=113.58∘+n⋅360∘x=113.58^\circ+n\cdot360^\circx=113.58∘+n⋅360∘

x=−113.58∘+n⋅360∘x=-113.58^\circ+n\cdot360^\circx=−113.58∘+n⋅360∘

Here, nnn is any integer.

Finding the solutions between 180∘180^\circ180∘ and 720∘720^\circ720∘

Now that we have the sets of possible solutions, we can adjust the value of nnn to find all the values that fall within our desired interval.Let us start with the first expression, 113.58∘+n⋅360∘113.58^\circ+n\cdot360^\circ113.58∘+n⋅360∘.

Appropriate?

Now the second expression, −113.58∘+n⋅360∘-113.58^\circ+n\cdot360^\circ−113.58∘+n⋅360∘.

Appropriate?

Summary

  • x=246.42∘x=246.42^\circx=246.42∘

  • x=473.58∘x=473.58^\circx=473.58∘

  • x=606.42∘x=606.42^\circx=606.42∘

Solutions

Degree

Select one or more expressions that together represent all solutions to the equation. Your answer should be in DEGREEs. 4cos⁡(10x)+2=24\cos(10x)+2=24cos(10x)+2=2

Choose all answers that apply:

  • −172∘+n⋅36∘-172^\circ+n\cdot36^\circ−172∘+n⋅36∘

  • −90∘+n⋅360∘-90^\circ+n\cdot360^\circ−90∘+n⋅360∘

  • −9∘+n⋅36∘-9^\circ+n\cdot36^\circ−9∘+n⋅36∘

  • 9∘+n⋅36∘9^\circ+n\cdot36^\circ9∘+n⋅36∘

  • 90∘+n⋅360∘90^\circ+n\cdot360^\circ90∘+n⋅360∘

  • 172∘+n⋅90∘172^\circ+n\cdot90^\circ172∘+n⋅90∘

Isolate the sinusoidal function

4cos⁡(10x)+2=24cos⁡(10x)=0cos⁡(10x)=0\begin{aligned}4\cos(10x)+2&=2\\\\ 4\cos(10x)&=0\\\\ \cos(10x)&=0\end{aligned}4cos(10x)+24cos(10x)cos(10x)​=2=0=0​

Find all values of 10x10x10x between −180∘-180^\circ−180∘ and 180∘180^\circ180∘

Our argument is 10x10x10x. Let's use the calculator and round to the nearest hundredth.

cos⁡−1(0)=90∘\cos^{-1}(0)=90^\circcos−1(0)=90∘

Now we can use the identity cos⁡(θ)=cos⁡(−θ)\cos(\theta)=\cos(-\theta)cos(θ)=cos(−θ) to find that the second solution within the interval is −90∘-90^\circ−90∘.

Finding all solutions

Using the identity cos⁡(θ)=cos⁡(θ+360∘)\cos(\theta)=\cos(\theta+360^\circ)cos(θ)=cos(θ+360∘), we can find all the solutions to our equation from the two angles we found above. The first solution gives us the following.

10x=90∘+n⋅360∘x=90∘+n⋅360∘10=9∘+n⋅36∘\begin{aligned}10x&=90^\circ+n\cdot360^\circ \\\\x&=\dfrac{90^\circ+n\cdot360^\circ}{10}=9^\circ+n\cdot36^\circ\end{aligned}10xx​=90∘+n⋅360∘=1090∘+n⋅360∘​=9∘+n⋅36∘​​

​Similarly, the second solution gives us the following.

10x=−90∘+n⋅360∘x=−90∘+n⋅360∘10=−9∘+n⋅36∘\begin{aligned}10x&=-90^\circ+n\cdot360^\circ \\\\x&=\dfrac{-90^\circ+n\cdot360^\circ}{10}=-9^\circ+n\cdot36^\circ\end{aligned}10xx​=−90∘+n⋅360∘=10−90∘+n⋅360∘​=−9∘+n⋅36∘​

Summary

Our solutions are as follows.

  • x=−9∘+n⋅36∘x=-9^\circ+n\cdot36^\circx=−9∘+n⋅36∘

  • x=9∘+n⋅36∘x=9^\circ+n\cdot36^\circx=9∘+n⋅36∘

Radian

Select one or more expressions that together represent all solutions to the equation. Your answer should be in RADIANs. 6sin⁡(20x)+1=16\sin(20x)+1=16sin(20x)+1=1

Isolate the sinusoidal function

6sin⁡(20x)+1=16sin⁡(20x)=0sin⁡(20x)=0\begin{aligned}6\sin(20x)+1&=1\\\\ 6\sin(20x)&=0\\\\ \sin(20x)&=0\end{aligned}6sin(20x)+16sin(20x)sin(20x)​=1=0=0​

Find all values of 20x20x20x between −π-\pi−π and π\piπ

Our argument is 20x20x20x.

sin⁡−1(0)=0\sin^{-1}(0)=0sin−1(0)=0

Now we can use the identity sin⁡(θ)=sin⁡(π−θ)\sin(\theta)=\sin(\pi-\theta)sin(θ)=sin(π−θ) to find that the other solutions within the interval are −π-\pi−π and π\piπ. Since they are separated by 2π2\pi2π, we can choose either value. Let's use the latter.

Finding all solutions

Using the identity sin⁡(θ)=sin⁡(θ+2π)\sin(\theta)=\sin(\theta+2\pi)sin(θ)=sin(θ+2π), we can find all the solutions to our equation from the two angles we found above. The first solution gives us the following.

20x=0+n⋅2πx=n⋅2π20=n⋅π10​​\begin{aligned}20x&=0+n\cdot2\pi \\\\x&=\dfrac{n\cdot2\pi}{20}=n\cdot\dfrac{\pi}{10}\end{aligned}​​20xx​=0+n⋅2π=20n⋅2π​=n⋅10π​​​​

Similarly, the second solution gives us the following.

20x=π+n⋅2πx=π+n⋅2π20=π20+n⋅π10\begin{aligned}20x&=\pi+n\cdot2\pi \\x&=\dfrac{\pi+n\cdot2\pi}{20}=\dfrac{\pi}{20}+n\cdot\dfrac{\pi}{10}\end{aligned}20xx​=π+n⋅2π=20π+n⋅2π​=20π​+n⋅10π​​

Summary

Our solutions are as follows.

  • x=n⋅π10x=n\cdot\dfrac{\pi}{10}x=n⋅10π​

  • x=π20+n⋅π10x=\dfrac{\pi}{20}+n\cdot\dfrac{\pi}{10}x=20π​+n⋅10π​

16cos(8x)−2=6\fbox{\large 16cos(8x)−2=6}16cos(8x)−2=6​

Isolate the sinusoidal function

16cos⁡(8x)−2=616cos⁡(8x)=8cos⁡(8x)=0.5\begin{aligned}16\cos(8x)-2&=6\\\\ 16\cos(8x)&=8\\\\ \cos(8x)&=0.5\end{aligned}16cos(8x)−216cos(8x)cos(8x)​=6=8=0.5​

Find all values of 8x8x8x between −π-\pi−π and π\piπ

Our argument is 8x8x8x.

cos⁡−1(0.5)=π3\cos^{-1}(0.5)=\dfrac{\pi}{3}cos−1(0.5)=3π​

Now we can use the identity cos⁡(θ)=cos⁡(−θ)\cos(\theta)=\cos(-\theta)cos(θ)=cos(−θ) to find that the second solution within the interval is −π3-\dfrac{\pi}{3}−3π​

Finding all solutions

Using the identity cos⁡(θ)=cos⁡(θ+2π)\cos(\theta)=\cos(\theta+2\pi)cos(θ)=cos(θ+2π), we can find all the solutions to our equation from the two angles we found above. The first solution gives us the following.

8x=π3+n⋅2πx=π3+n⋅2π8=π24+n⋅π4\begin{aligned}8x&=\dfrac{\pi}{3}+n\cdot2\pi \\\\x&=\dfrac{\dfrac{\pi}{3}+n\cdot2\pi}{8}=\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}\end{aligned}8xx​=3π​+n⋅2π=83π​+n⋅2π​=24π​+n⋅4π​​

Similarly, the second solution gives us the following.

8x=−π3+n⋅2πx=−π3+n⋅2π8=−π24+n⋅π4\begin{aligned}8x&=-\dfrac{\pi}{3}+n\cdot2\pi \\\\x&=\dfrac{-\dfrac{\pi}{3}+n\cdot2\pi}{8}=-\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}\end{aligned}8xx​=−3π​+n⋅2π=8−3π​+n⋅2π​=−24π​+n⋅4π​​

Summary

Our solutions are as follows.

  • x=−π24+n⋅π4x=-\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}x=−24π​+n⋅4π​

  • x=π24+n⋅π4x=\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}x=24π​+n⋅4π​

except

​

Arcsin or

Arccos or

Arccos or

, all real numbers

Arccot or

, all real numbers except

Acrsec or

and

Arccsc or

and

🪶
π2+π\frac{\pi}{2} + \pi2π​+π
(−π2,π2)(-\frac{\pi}{2},\frac{\pi}{2})(−2π​,2π​)
−π2≤arcsin⁡(θ)≤π2-\dfrac{\pi}{2}\leq\arcsin(\theta)\leq\dfrac{\pi}{2}−2π​≤arcsin(θ)≤2π​
−90∘≤arcsin⁡(θ)≤90∘-90^\circ\leq\arcsin(\theta)\leq 90^\circ−90∘≤arcsin(θ)≤90∘
0≤arccos⁡(θ)≤π0\leq\arccos(\theta)\leq\pi0≤arccos(θ)≤π
0∘≤arccos⁡(θ)≤180∘0^\circ\leq\arccos(\theta)\leq 180^\circ0∘≤arccos(θ)≤180∘
−π2<arctan⁡(θ)<π2-\dfrac{\pi}{2}<\arctan(\theta)<\dfrac{\pi}{2}−2π​<arctan(θ)<2π​
−90∘<arctan⁡(θ)<90∘-90^\circ<\arctan(\theta)<90^\circ−90∘<arctan(θ)<90∘
xxx
sin−1xsin^{-1} xsin−1x
−1<=x<=1-1 <= x <= 1 −1<=x<=1
−π/2<=y<=π/2-π/2 <= y <= π/2−π/2<=y<=π/2
xxx
cos−1xcos^{ -1} xcos−1x
1<=x<=11 <= x <= 1 1<=x<=1
0<=y<=π0 <= y <= π0<=y<=π
xxx
tan−1xtan^{-1}xtan−1x
xxx
−π/2<y<π/2-π/2 < y < π/2−π/2<y<π/2
xxx
cot−1xcot^{-1} xcot−1x
xxx
0=π/20 = π/20=π/2
−π/2<y<π/2-π/2 < y < π/2−π/2<y<π/2
xxx
sec−1xsec^{-1} xsec−1x
x<=−1x <= -1x<=−1
x>=1x >= 1x>=1
0<=y<π/2orπ/2<y<=π0 <= y < π/2 or π/2 < y <= π0<=y<π/2orπ/2<y<=π
xxx
csc−1xcsc^{-1} xcsc−1x
x<=−1x <= -1x<=−1
x>=1x >= 1x>=1
−π/2<=y<0or0<y<=π/2-π/2 <= y < 0 or 0 < y <= π/2−π/2<=y<0or0<y<=π/2
nnn
113.58∘+n⋅360∘113.58^\circ+n\cdot360^\circ113.58∘+n⋅360∘
000
113.58∘113.58^\circ113.58∘
Too low\redD{\text{Too low}}Too low
111
473.58∘473.58^\circ473.58∘
Yes\greenD{\text{Yes}}Yes
222
833.58∘833.58^\circ833.58∘
Too high\redD{\text{Too high}}Too high
nnn
−113.58∘+n⋅360∘-113.58^\circ+n\cdot360^\circ−113.58∘+n⋅360∘
000
−113.58∘-113.58^\circ−113.58∘
Too low\redD{\text{Too low}}Too low
111
246.42∘246.42^\circ246.42∘
Yes\greenD{\text{Yes}}Yes
222
606.42∘606.42^\circ606.42∘
Yes\greenD{\text{Yes}}Yes
333
966.42∘966.42^\circ966.42∘
Too high\redD{\text{Too high}}Too high
Inverse Trigonometric Functions Calculator