Trigonometry

https://en.wikipedia.org/wiki/Trigonometry

g(x)=tan(x3π2)+6x=tan(g1(x)3π2)+6x6=tan(g1(x)3π2)tan1(x6)=g1(x)3π2g1(x)=tan1(x6)+3π2\begin{aligned}g(x)&=tan(x -\frac{3\pi}{2})+6 \\\\ x &= tan(g^{-1}(x) -\frac{3\pi}{2})+6 \\\\x - 6 &= tan(g^{-1}(x) -\frac{3\pi}{2}) \\\\tan^{-1}(x-6) &= g^{-1}(x) -\frac{3\pi}{2} \\\\ g^{-1}(x) &= tan^{-1}(x-6)+\frac{3\pi}{2}\end{aligned}

tantan

domain

range

all reals

all reals

except π2+π\frac{\pi}{2} + \pi

tan1tan^{-1}

domain

range

all reals

(π2,π2)(-\frac{\pi}{2},\frac{\pi}{2})

What are the inverse trigonometric functions?

arcsin(x),orsin1(x)\arcsin(x), \text{or} \sin^{-1}(x), is the inverse of sin(x)\sin(x).

arccos(x),orcos1(x)\arccos(x), \text{or} \cos^{-1}(x), is the inverse of cos(x)\cos(x).

arctan(x),ortan1(x)\arctan(x), \text{or} \tan^{-1}(x), is the inverse of tan(x)\tan(x).

Range of the inverse trig functions

Radians

Degrees

π2arcsin(θ)π2-\dfrac{\pi}{2}\leq\arcsin(\theta)\leq\dfrac{\pi}{2}

90arcsin(θ)90-90^\circ\leq\arcsin(\theta)\leq 90^\circ

0arccos(θ)π0\leq\arccos(\theta)\leq\pi

0arccos(θ)1800^\circ\leq\arccos(\theta)\leq 180^\circ

π2<arctan(θ)<π2-\dfrac{\pi}{2}<\arctan(\theta)<\dfrac{\pi}{2}

90<arctan(θ)<90-90^\circ<\arctan(\theta)<90^\circ

The trigonometric functions aren't really invertible, because they have multiple inputs that have the same output. For example, sin(0)=sin(π)=0sin(0)\sin(0)=\sin(\pi)=0sin(0). So what should be sin1(0)\sin^{-1}(0)?

In order to define the inverse functions, we have to restrict the domain of the original functions to an interval where they are invertible. These domains determine the range of the inverse functions.

The value from the appropriate range that an inverse function returns is called the principal value of the function.

The sine value of all options is 0.980.98. Which is the principal value of arcsin(0.98)\arcsin\left(0.98\right)?

The only measure out of the options that is within the interval [π2,π2]\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right] is 1.3711.371.

Therefore, arcsin(0.98)=1.37\arcsin\left(0.98\right)=1.37.

The cosine value of all options is 0.320.32. Which is the principal value of cos1(0.32)\cos^{-1}\left(0.32\right)?

The only measure out of the options that is within the interval [0,π]\left[0,\pi\right] is 1.251.25.

Therefore, cos1(0.32)=1.25\cos^{-1}\left(0.32\right)=1.25.

The tangent value of all options is 21-21. Which is the principal value of tan1(21)\tan^{-1}\left(-21\right)?

The only measure out of the options that is within the interval (π2,π2)\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right) is 1.52-1.52.

Therefore, tan1(21)=1.52\tan^{-1}\left(-21\right)=-1.52.

Inverse Trig Function Ranges

Function Name

Function Abbreviations

Range of Principal Values

Arcsine

Arcsin xx or sin1xsin^{-1} x

1<=x<=1-1 <= x <= 1 π/2<=y<=π/2-π/2 <= y <= π/2

Arccosine

Arccos xx or cos1xcos^{ -1} x

1<=x<=11 <= x <= 1 0<=y<=π0 <= y <= π

Arctangent

Arccos xxor tan1xtan^{-1}x

xx, all real numbers π/2<y<π/2-π/2 < y < π/2

Arccotangent

Arccot xx or cot1xcot^{-1} x

xx, all real numbers except 0=π/20 = π/2 π/2<y<π/2-π/2 < y < π/2

Arcsecant

Acrsec xx or sec1xsec^{-1} x

x<=1x <= -1 and x>=1x >= 1 0<=y<π/2orπ/2<y<=π0 <= y < π/2 or π/2 < y <= π

Arccosecant

Arccsc xx or csc1xcsc^{-1} x

x<=1x <= -1 and x>=1x >= 1 π/2<=y<0or0<y<=π/2-π/2 <= y < 0 or 0 < y <= π/2

Note: If we have a y=cosθy = cos\theta and move to the right we are going counter clockwise around the unit circle and visa versa.

So,

cosθ=1 2πnwe can also write it as 0,2π,4π,6π,...cosθ=12πn+ππ,π,3π,5π,...cos\theta = 1 \ \Rightarrow 2\pi n \Longrightarrow \text{we can also write it as }0, 2\pi, 4\pi, 6\pi,... \newline cos\theta = -1 \Rightarrow 2\pi n + \pi \Longrightarrow -\pi, \pi, 3\pi, 5\pi,...

Quiz's

Select one or more expressions that together represent all solutions to the equation. Your answer should be in radians.

cos(x)=0.1cos(x)=−0.1

Finding all solutions within π<x<π-\pi<x<\pi

Let's use the calculator and round to the nearest hundredth.

cos1(0.1)=1.67\cos^{-1}(-0.1)=1.67

Now we can use the identity cos(θ)=cos(θ)\cos(\theta)=\cos(-\theta) to find that the second solution within the interval is 1.67-1.67

Extending to all solutions

We use the identity cos(θ)=cos(θ+2π)\cos(\theta)=\cos(\theta+2\pi)to extend the two solutions we found to all solutions.

x=1.67+n2πx=-1.67+n\cdot2\pi

x=1.67+n2πx=1.67+n\cdot2\pi

Solve the equation in the interval from 180180^\circ to 720720^\circ. Your answer should be in degrees.

cos(x)=0.4cos(x)=−0.4

Finding all solutions within 180<x180-180^\circ<x\leq180^\circ

Let's use the calculator and round to the nearest hundredth.

cos1(0.4)=113.58\cos^{-1}(-0.4)=113.58^\circ

Now we can use the identity cos(θ)=cos(θ)\cos(\theta)=\cos(-\theta) to find that the second solution within the interval is 113.58-113.58^\circ.

Finding the set of possible solutions

We use the identity cos(θ)=cos(θ+360)\cos(\theta)=\cos(\theta+360^\circ) to extend the two solutions we found to all solutions.

x=113.58+n360x=113.58^\circ+n\cdot360^\circ

x=113.58+n360x=-113.58^\circ+n\cdot360^\circ

Here, nn is any integer.

Finding the solutions between 180180^\circ and 720720^\circ

Now that we have the sets of possible solutions, we can adjust the value of nn to find all the values that fall within our desired interval.Let us start with the first expression, 113.58+n360113.58^\circ+n\cdot360^\circ.

nn

113.58+n360113.58^\circ+n\cdot360^\circ

Appropriate?

00

113.58113.58^\circ

Too low\redD{\text{Too low}}

11

473.58473.58^\circ

Yes\greenD{\text{Yes}}

22

833.58833.58^\circ

Too high\redD{\text{Too high}}

Now the second expression, 113.58+n360-113.58^\circ+n\cdot360^\circ.

nn

113.58+n360-113.58^\circ+n\cdot360^\circ

Appropriate?

00

113.58-113.58^\circ

Too low\redD{\text{Too low}}

11

246.42246.42^\circ

Yes\greenD{\text{Yes}}

22

606.42606.42^\circ

Yes\greenD{\text{Yes}}

33

966.42966.42^\circ

Too high\redD{\text{Too high}}

Summary

  • x=246.42x=246.42^\circ

  • x=473.58x=473.58^\circ

  • x=606.42x=606.42^\circ

Solutions

Degree

Select one or more expressions that together represent all solutions to the equation. Your answer should be in DEGREEs. 4cos(10x)+2=24\cos(10x)+2=2

Choose all answers that apply:

  • 172+n36-172^\circ+n\cdot36^\circ

  • 90+n360-90^\circ+n\cdot360^\circ

  • 9+n36-9^\circ+n\cdot36^\circ

  • 9+n369^\circ+n\cdot36^\circ

  • 90+n36090^\circ+n\cdot360^\circ

  • 172+n90172^\circ+n\cdot90^\circ

Isolate the sinusoidal function

4cos(10x)+2=24cos(10x)=0cos(10x)=0\begin{aligned}4\cos(10x)+2&=2\\\\ 4\cos(10x)&=0\\\\ \cos(10x)&=0\end{aligned}

Find all values of 10x10x between 180-180^\circ and 180180^\circ

Our argument is 10x10x. Let's use the calculator and round to the nearest hundredth.

cos1(0)=90\cos^{-1}(0)=90^\circ

Now we can use the identity cos(θ)=cos(θ)\cos(\theta)=\cos(-\theta) to find that the second solution within the interval is 90-90^\circ.

Finding all solutions

Using the identity cos(θ)=cos(θ+360)\cos(\theta)=\cos(\theta+360^\circ), we can find all the solutions to our equation from the two angles we found above. The first solution gives us the following.

10x=90+n360x=90+n36010=9+n36\begin{aligned}10x&=90^\circ+n\cdot360^\circ \\\\x&=\dfrac{90^\circ+n\cdot360^\circ}{10}=9^\circ+n\cdot36^\circ\end{aligned}

​Similarly, the second solution gives us the following.

10x=90+n360x=90+n36010=9+n36\begin{aligned}10x&=-90^\circ+n\cdot360^\circ \\\\x&=\dfrac{-90^\circ+n\cdot360^\circ}{10}=-9^\circ+n\cdot36^\circ\end{aligned}

Summary

Our solutions are as follows.

  • x=9+n36x=-9^\circ+n\cdot36^\circ

  • x=9+n36x=9^\circ+n\cdot36^\circ

Radian

Select one or more expressions that together represent all solutions to the equation. Your answer should be in RADIANs. 6sin(20x)+1=16\sin(20x)+1=1

Isolate the sinusoidal function

6sin(20x)+1=16sin(20x)=0sin(20x)=0\begin{aligned}6\sin(20x)+1&=1\\\\ 6\sin(20x)&=0\\\\ \sin(20x)&=0\end{aligned}

Find all values of 20x20x between π-\pi and π\pi

Our argument is 20x20x.

sin1(0)=0\sin^{-1}(0)=0

Now we can use the identity sin(θ)=sin(πθ)\sin(\theta)=\sin(\pi-\theta) to find that the other solutions within the interval are π-\pi and π\pi. Since they are separated by 2π2\pi, we can choose either value. Let's use the latter.

Finding all solutions

Using the identity sin(θ)=sin(θ+2π)\sin(\theta)=\sin(\theta+2\pi), we can find all the solutions to our equation from the two angles we found above. The first solution gives us the following.

20x=0+n2πx=n2π20=nπ10​​\begin{aligned}20x&=0+n\cdot2\pi \\\\x&=\dfrac{n\cdot2\pi}{20}=n\cdot\dfrac{\pi}{10}\end{aligned}​​

Similarly, the second solution gives us the following.

20x=π+n2πx=π+n2π20=π20+nπ10\begin{aligned}20x&=\pi+n\cdot2\pi \\x&=\dfrac{\pi+n\cdot2\pi}{20}=\dfrac{\pi}{20}+n\cdot\dfrac{\pi}{10}\end{aligned}

Summary

Our solutions are as follows.

  • x=nπ10x=n\cdot\dfrac{\pi}{10}

  • x=π20+nπ10x=\dfrac{\pi}{20}+n\cdot\dfrac{\pi}{10}

16cos(8x)−2=6\fbox{\large 16cos(8x)−2=6}

Isolate the sinusoidal function

16cos(8x)2=616cos(8x)=8cos(8x)=0.5\begin{aligned}16\cos(8x)-2&=6\\\\ 16\cos(8x)&=8\\\\ \cos(8x)&=0.5\end{aligned}

Find all values of 8x8x between π-\pi and π\pi

Our argument is 8x8x.

cos1(0.5)=π3\cos^{-1}(0.5)=\dfrac{\pi}{3}

Now we can use the identity cos(θ)=cos(θ)\cos(\theta)=\cos(-\theta) to find that the second solution within the interval is π3-\dfrac{\pi}{3}

Finding all solutions

Using the identity cos(θ)=cos(θ+2π)\cos(\theta)=\cos(\theta+2\pi), we can find all the solutions to our equation from the two angles we found above. The first solution gives us the following.

8x=π3+n2πx=π3+n2π8=π24+nπ4\begin{aligned}8x&=\dfrac{\pi}{3}+n\cdot2\pi \\\\x&=\dfrac{\dfrac{\pi}{3}+n\cdot2\pi}{8}=\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}\end{aligned}

Similarly, the second solution gives us the following.

8x=π3+n2πx=π3+n2π8=π24+nπ4\begin{aligned}8x&=-\dfrac{\pi}{3}+n\cdot2\pi \\\\x&=\dfrac{-\dfrac{\pi}{3}+n\cdot2\pi}{8}=-\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}\end{aligned}

Summary

Our solutions are as follows.

  • x=π24+nπ4x=-\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}

  • x=π24+nπ4x=\dfrac{\pi}{24}+n\cdot\dfrac{\pi}{4}

Last updated