Mean and variance of Bernoulli distribution example
unfavorable = 40% ----> 0
favorable = 60% ----> 1
We map the values to a 0 and 1.
Mean:
Ξ=0.4â
0+0.6â
1=0.6
Variance:
Ï2=0.4â
(0â0.6)2+0.6â
(1â0.6)2Ï2=0.4â
0.36+0.6â
0.16Ï2=0.24ÏÂ Â =0.24â=0.49
Bernoulli distribution mean and variance formulas
unfavorable = 40% ----> 0 ===> we change it to (1 - p) -> failure
favorable = 60% ----> 1 ===> we change it to (p) -> success
Ξ=(1âp)â
0+pâ
1=p
Ï2=(1âp)(0âp)2+p(1âp)2Ï2=(1âp)p2+p(1â2p+p2)Ï2=p2âp3+pâ2p2+p3Ï2=pâp2Ï2=p(1âp)
(see Statistics (hackerrank)/Poisson Distribution)
Finding the mean and standard deviation of a binomial random variable
A company produces cell phone chips. 2% of them are defect. A quality check involves randomly selecting and testing 500 chips.
What are the mean and standard deviation?