Binomial mean and standard deviation formulas

Mean and variance of Bernoulli distribution example

unfavorable = 40% ----> 0

favorable = 60% ----> 1

We map the values to a 0 and 1.

Mean:

μ=0.40+0.61=0.6\mu = 0.4 \cdot 0 + 0.6 \cdot 1 = 0.6

Variance:

σ2=0.4(00.6)2+0.6(10.6)2σ2=0.40.36+0.60.16σ2=0.24σ  =0.24=0.49\sigma^2 = 0.4 \cdot (0-0.6)^2 + 0.6 \cdot (1 - 0.6)^2 \newline \sigma^2 = 0.4 \cdot 0.36 + 0.6 \cdot 0.16\newline \sigma^2 = 0.24\newline \sigma\ \ =\sqrt{0.24} = 0.49

Bernoulli distribution mean and variance formulas

unfavorable = 40% ----> 0 ===> we change it to (1 - p) -> failure

favorable = 60% ----> 1 ===> we change it to (p) -> success

μ=(1p)0+p1=p\mu = (1-p) \cdot 0 + p \cdot 1 = p

σ2=(1p)(0p)2+p(1p)2σ2=(1p)p2+p(12p+p2)σ2=p2p3+p2p2+p3σ2=pp2σ2=p(1p)\sigma^2=(1 -p)(0-p)^2 + p(1-p)^2\newline \sigma^2 = (1-p)p^2 +p(1-2p+p^2)\newline \sigma^2 = p^2 -p^3+p-2p^2+p^3\newline \sigma^2= p-p^2 \newline \sigma^2 = p(1-p)

(see Statistics (hackerrank)/Poisson Distribution)

X = # of successes after nn trials where P(success) for each trial is pp

E(X)=npE(X)=n \cdot p

E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)

Finding the mean and standard deviation of a binomial random variable

A company produces cell phone chips. 2% of them are defect. A quality check involves randomly selecting and testing 500 chips.

What are the mean and standard deviation?

XX= # of defective chips in 500 chip sample

μx=E(X)=npμx=5000.02=10\mu_x=E(X)=n \cdot p \newline \mu_x = 500 \cdot 0.02 = 10

σx=σx2=Var(X)=np(1p)=5000.020.98=9.8=3.13\sigma_x = \sqrt{\sigma_x^2} = \sqrt{Var(X)}=\sqrt{n \cdot p \cdot (1-p)}=\sqrt{500 \cdot 0.02 \cdot 0.98} = \sqrt{9.8} = 3.13

Last updated