Presentation
model = Sequential([
Conv2D(32, (3, 3), input_shape=input_shape),
Activation('relu'),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(32, (3, 3)),
Activation('relu'),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(64, (3, 3)),
Activation('relu'),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(64),
Activation('relu'),
Dropout(0.5),
Dense(5),
Activation('sigmoid')
])
VGG16_model = VGG16(include_top=False,
weights='imagenet')
model = Sequential([
VGG16_model,
Flatten(input_shape=train_data.shape[1:]),
Dense(256, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
Last updated