scrapbook
Ctrlk
  • "Unorganized" Notes
  • The Best Public Datasets for Machine Learning and Data Science
  • Practice Coding
  • plaid-API project
  • Biotech
  • Machine Learning for Computer Graphics
  • Books (on GitHub)
  • Ideas/Thoughts
  • Ziva for feature animation: Stylized simulation and machine learning-ready workflows
  • Tools
  • 🪶math
    • Papers
    • Math for ML (coursera)
    • Improving your Algorithms & Data Structure Skills
    • Algorithms
    • Algorithms (MIT)
    • Algorithms (khan academy)
    • Algorithms (udacity)
    • Udacity
    • math-notes
    • Probability (MIT)
    • Statistics and probability (khan academy)
      • Analyzing categorical data
      • Describing and comparing distributions
      • Outliers Definition
      • Mean Absolute Deviation (MAD)
      • Modeling data distribution
      • Exploring bivariate numerical data
      • Study Design
      • Probability
      • Counting, permutations, and combinations
      • Binomial variables
      • Central Limit Theorem
      • Significance Tests (hypothesis testing)
    • Statistics (hackerrank)
  • 📽️PRODUCT
  • 👨‍💻coding
    • of any interest
    • Maya API
    • Python
    • Python in CG Production
    • GLSL/HLSL Shading programming
    • Deep Learning Specialization
    • TensorFlow for AI, ML, and DL
    • GitHub
    • Agile - User Stories
    • The Open-Source Data Science Masters
    • Coding Challenge Websites
    • Coding Interview
    • spaCy
    • Pandas
    • Python Packages
    • Julia
    • macos
    • CPP
    • Advanced Machine Learning
  • data science
    • Resources
    • Tensorflow C++
    • Computerphile
    • Google ML Crash Course
    • Kaggle
    • Jupiter Notebook Tips & Tricks
    • Image Datasets Notes
    • DS Cheatsheets
    • Data Visualisation
    • fast.ai
    • Data Scientist
    • ML for Beginners (Video)
    • ML Mastery
    • Linear algebra cheat sheet for deep learning
    • DL_ML_Resources
    • Awesome Machine Learning
    • web scraping
    • SQL Style Guide
    • SQL - Tips & Tricks
  • 💡Ideas & Thoughts
    • Outdoors
    • Blog
    • Book Recommendations by Demi Lee
  • career
    • Skills
    • learn.co
    • Carrier Prep
  • projects
    • Text Classification
    • TERRA-REF
    • saildrone
  • Computer Graphics
  • AI/ML
  • 3deeplearning
  • Tools/Plugins
  • AR/VR
  • Game Engine
  • Rigging
  • Maya
  • Houdini
Powered by GitBook
On this page
  1. 🪶math

Statistics and probability (khan academy)

Analyzing categorical dataDescribing and comparing distributionsOutliers DefinitionMean Absolute Deviation (MAD)Modeling data distributionExploring bivariate numerical dataStudy DesignProbabilityCounting, permutations, and combinationsBinomial variablesCentral Limit TheoremSignificance Tests (hypothesis testing)
PreviousMathematical background: Sets; sequences, limits, and series; (un)countable sets.NextAnalyzing categorical data

Last updated 7 years ago