Introduction: Einstein summation convention and the symmetry of the dot product
A B = C C i k = a i j b j k AB = C \newline
C_{ik} = a_{ij}b_{jk} A B = C C ik = a ij b jk Multiplying a 2x3 matrix with a 3x4 matrix results in a 2x4 matrix; by first row times each columns
( u i ⋮ ) ⋅ ( v i ⋮ ) \begin{pmatrix}u_i\\\vdots\end{pmatrix}\cdot\begin{pmatrix}v_i\\\vdots\end{pmatrix}
( u i ⋮ ) ⋅ ( v i ⋮ ) [ u 1 u 2 . . . u n ] [ v 1 v 2 ⋮ v n ] [u_1 u_2 ... u_n]\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix} [ u 1 u 2 ... u n ] v 1 v 2 ⋮ v n ( a 11 ⋯ a 1 n ⋮ a n 1 ⋯ a n n ) ( b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ) \begin{pmatrix}a_{11} \cdots a_{1n}\\\vdots\\a_{n1} \cdots a_{nn}\end{pmatrix} \begin{pmatrix}b_{11} \cdots b_{1n}\\\vdots\\b_{n1} \cdots b_{nn}\end{pmatrix} a 11 ⋯ a 1 n ⋮ a n 1 ⋯ a nn b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b nn ( a b ) 23 = a 21 b 13 + a 22 b 23 + ⋯ + a 2 n b n 3 a b i k = ∑ j a i j b j k = a i j b j k (ab)_{23} = a_{21}b_{13} + a_{22}b_{23} + \cdots + a_{2n}b_{n3} \newline
ab_{ik} = \sum_{j} a_{ij}b_{jk} = a_{ij}b_{jk} ( ab ) 23 = a 21 b 13 + a 22 b 23 + ⋯ + a 2 n b n 3 a b ik = j ∑ a ij b jk = a ij b jk
Matrices changing basis
NOTE: Projection only works if orthogonal unit space
Bears basis had a first axis of three, one and a second axis of one, one. Let's say I have a vector x, y defined in bears basis. As I want to transform it by doing something like a rotation of 45 degrees.
Orthogonal matrices
The Gram–Schmidt process
Example: Reflecting in a plane