Standard Deviation
The expected value of a discrete random variable, , is more or less another way of referring to the mean (). We can also refer to this as the mathematical expectation (or just the expectation) of .
This is the average magnitude of fluctuations of from its expected value, . You can also think of it as the expectation of a random variable's squared deviation from its mean. Given a data set, , of size :
where is the element of the data set and is the mean of all the elements.
The standard deviation quantifies the amount of variation in a set of data values. Given a data set, , of size :
where is the element of the data set and is the mean of all the elements.
import math
num = int(input())
values = list(map(int, input().split()))
mean = sum(values)/num
result = 0
for i in values:
result += (i - mean)**2
print('%.1f' % math.sqrt(result/num))
Interquartile Range
num = 5
elements = [10, 40, 30, 50, 20]
freq = [1, 2, 3, 4, 5]
values = []
for k, v in enumerate(elements):
values.extend([v] * freq[k])
values.sort()
lower = values[:len(values)//2]
upper = values[len(values)//2:]
num = len(values)-1
if num % 2 == 0:
lower = values[:len(values)//2]
upper = values[len(values)//2:]
else:
lower = values[:len(values)//2]
upper = values[len(values)//2:]
lower.append(upper[0])
if len(lower) % 2 == 0:
v1 = lower[int(len(lower)/2)-1]
v2 = lower[int(len(lower)/2)]
q1 = (v1+v2)/2
v1 = upper[int(len(upper)/2)-1]
v2 = upper[int(len(upper)/2)]
q3 = (v1+v2)/2
else:
q1 = lower[int(len(lower)/2)]
q3 = upper[int(len(upper)/2)]
print(float(q3 - q1))
Last updated