scrapbook
  • "Unorganized" Notes
  • The Best Public Datasets for Machine Learning and Data Science
  • Practice Coding
  • plaid-API project
  • Biotech
    • Machine Learning vs. Deep Learning
  • Machine Learning for Computer Graphics
  • Books (on GitHub)
  • Ideas/Thoughts
  • Ziva for feature animation: Stylized simulation and machine learning-ready workflows
  • Tools
  • 🪶math
    • Papers
    • Math for ML (coursera)
      • Linear Algebra
        • Wk1
        • Wk2
        • Wk3
        • Wk4
        • Wk5
      • Multivariate Calculus
    • Improving your Algorithms & Data Structure Skills
    • Algorithms
    • Algorithms (MIT)
      • Lecture 1: Algorithmic Thinking, Peak Finding
    • Algorithms (khan academy)
      • Binary Search
      • Asymptotic notation
      • Sorting
      • Insertion sort
      • Recursion
      • Solve Hanoi recursively
      • Merge Sort
      • Representing graphs
      • The breadth-first search algorithm
      • Breadth First Search in JavaScript
      • Breadth-first vs Depth-first Tree Traversal in Javascript
    • Algorithms (udacity)
      • Social Network
    • Udacity
      • Linear Algebra Refresher /w Python
    • math-notes
      • functions
      • differential calculus
      • derivative
      • extras
      • Exponentials & logarithms
      • Trigonometry
    • Probability (MIT)
      • Unit 1
        • Probability Models and Axioms
        • Mathematical background: Sets; sequences, limits, and series; (un)countable sets.
    • Statistics and probability (khan academy)
      • Analyzing categorical data
      • Describing and comparing distributions
      • Outliers Definition
      • Mean Absolute Deviation (MAD)
      • Modeling data distribution
      • Exploring bivariate numerical data
      • Study Design
      • Probability
      • Counting, permutations, and combinations
      • Binomial variables
        • Binomial Distribution
        • Binomial mean and standard deviation formulas
        • Geometric random variable
      • Central Limit Theorem
      • Significance Tests (hypothesis testing)
    • Statistics (hackerrank)
      • Mean, Medium, Mode
      • Weighted Mean
      • Quartiles
      • Standard Deviation
      • Basic Probability
      • Conditional Probability
      • Permutations & Combinations
      • Binomial Distribution
      • Negative Binomial
      • Poisson Distribution
      • Normal Distribution
      • Central Limit Theorem
      • Important Concepts in Bayesian Statistics
  • 📽️PRODUCT
    • Product Strategy
    • Product Design
    • Product Development
    • Product Launch
  • 👨‍💻coding
    • of any interest
    • Maya API
      • Python API
    • Python
      • Understanding Class Inheritance in Python 3
      • 100+ Python challenging programming exercises
      • coding
      • Iterables vs. Iterators vs. Generators
      • Generator Expression
      • Stacks (LIFO) / Queues (FIFO)
      • What does -1 mean in numpy reshape?
      • Fold Left and Right in Python
      • Flatten a nested list of lists
      • Flatten a nested dictionary
      • Traverse A Tree
      • How to Implement Breadth-First Search
      • Breadth First Search
        • Level Order Tree Traversal
        • Breadth First Search or BFS for a Graph
        • BFS for Disconnected Graph
      • Trees and Tree Algorithms
      • Graph and its representations
      • Graph Data Structure Interview Questions
      • Graphs in Python
      • GitHub Repo's
    • Python in CG Production
    • GLSL/HLSL Shading programming
    • Deep Learning Specialization
      • Neural Networks and Deep Learning
      • Untitled
      • Untitled
      • Untitled
    • TensorFlow for AI, ML, and DL
      • Google ML Crash Course
      • TensorFlow C++ API
      • TensorFlow - coursera
      • Notes
      • An Introduction to different Types of Convolutions in Deep Learning
      • One by One [ 1 x 1 ] Convolution - counter-intuitively useful
      • SqueezeNet
      • Deep Compression
      • An Overview of ResNet and its Variants
      • Introducing capsule networks
      • What is a CapsNet or Capsule Network?
      • Xception
      • TensorFlow Eager
    • GitHub
      • Project README
    • Agile - User Stories
    • The Open-Source Data Science Masters
    • Coding Challenge Websites
    • Coding Interview
      • leetcode python
      • Data Structures
        • Arrays
        • Linked List
        • Hash Tables
        • Trees: Basic
        • Heaps, Stacks, Queues
        • Graphs
          • Shortest Path
      • Sorting & Searching
        • Depth-First Search & Breadth-First Search
        • Backtracking
        • Sorting
      • Dynamic Programming
        • Dynamic Programming: Basic
        • Dynamic Programming: Advanced
    • spaCy
    • Pandas
    • Python Packages
    • Julia
      • jupyter
    • macos
    • CPP
      • Debugging
      • Overview of memory management problems
      • What are lvalues and rvalues?
      • The Rule of Five
      • Concurrency
      • Avoiding Data Races
      • Mutex
      • The Monitor Object Pattern
      • Lambdas
      • Maya C++ API Programming Tips
      • How can I read and parse CSV files in C++?
      • Cpp NumPy
    • Advanced Machine Learning
      • Wk 1
      • Untitled
      • Untitled
      • Untitled
      • Untitled
  • data science
    • Resources
    • Tensorflow C++
    • Computerphile
      • Big Data
    • Google ML Crash Course
    • Kaggle
      • Data Versioning
      • The Basics of Rest APIs
      • How to Make an API
      • How to deploying your API
    • Jupiter Notebook Tips & Tricks
      • Jupyter
    • Image Datasets Notes
    • DS Cheatsheets
      • Websites & Blogs
      • Q&A
      • Strata
      • Data Visualisation
      • Matplotlib etc
      • Keras
      • Spark
      • Probability
      • Machine Learning
        • Fast Computation of AUC-ROC score
    • Data Visualisation
    • fast.ai
      • deep learning
      • How to work with Jupyter Notebook on a remote machine (Linux)
      • Up and Running With Fast.ai and Docker
      • AWS
    • Data Scientist
    • ML for Beginners (Video)
    • ML Mastery
      • Machine Learning Algorithms
      • Deep Learning With Python
    • Linear algebra cheat sheet for deep learning
    • DL_ML_Resources
    • Awesome Machine Learning
    • web scraping
    • SQL Style Guide
    • SQL - Tips & Tricks
  • 💡Ideas & Thoughts
    • Outdoors
    • Blog
      • markdown
      • How to survive your first day as an On-set VFX Supervisor
    • Book Recommendations by Demi Lee
  • career
    • Skills
    • learn.co
      • SQL
      • Distribution
      • Hypothesis Testing Glossary
      • Hypothesis Tests
      • Hypothesis & AB Testing
      • Combinatorics Continued and Maximum Likelihood Estimation
      • Bayesian Classification
      • Resampling and Monte Carlo Simulation
      • Extensions To Linear Models
      • Time Series
      • Distance Metrics
      • Graph Theory
      • Logistic Regression
      • MLE (Maximum Likelihood Estimation)
      • Gradient Descent
      • Decision Trees
      • Ensemble Methods
      • Spark
      • Machine Learning
      • Deep Learning
        • Backpropagation - math notation
        • PRACTICE DATASETS
        • Big Data
      • Deep Learning Resources
      • DL Datasets
      • DL Tutorials
      • Keras
      • Word2Vec
        • Word2Vec Tutorial Part 1 - The Skip-Gram Model
        • Word2Vec Tutorial Part 2 - Negative Sampling
        • An Intuitive Explanation of Convolutional Neural Networks
      • Mod 4 Project
        • Presentation
      • Mod 5 Project
      • Capstone Project Notes
        • Streaming large training and test files into Tensorflow's DNNClassifier
    • Carrier Prep
      • The Job Search
        • Building a Strong Job Search Foundation
        • Key Traits of Successful Job Seekers
        • Your Job Search Mindset
        • Confidence
        • Job Search Action Plan
        • CSC Weekly Activity
        • Managing Your Job Search
      • Your Online Presence
        • GitHub
      • Building Your Resume
        • Writing Your Resume Summary
        • Technical Experience
      • Effective Networking
        • 30 Second Elevator Pitch
        • Leveraging Your Network
        • Building an Online Network
        • Linkedin For Research And Networking
        • Building An In-Person Network
        • Opening The Line Of Communication
      • Applying to Jobs
        • Applying To Jobs Online
        • Cover Letters
      • Interviewing
        • Networking Coffees vs Formal Interviews
        • The Coffee Meeting/ Informational Interview
        • Communicating With Recruiters And HR Professional
        • Research Before an Interview
        • Preparing Questions for Interviews
        • Phone And Video/Virtual Interviews
        • Cultural/HR Interview Questions
        • The Salary Question
        • Talking About Apps/Projects You Built
        • Sending Thank You's After an Interview
      • Technical Interviewing
        • Technical Interviewing Formats
        • Code Challenge Best Practices
        • Technical Interviewing Resources
      • Communication
        • Following Up
        • When You Haven't Heard From an Employer
      • Job Offers
        • Approaching Salary Negotiations
      • Staying Current in the Tech Industry
      • Module 6 Post Work
      • Interview Prep
  • projects
    • Text Classification
    • TERRA-REF
    • saildrone
  • Computer Graphics
  • AI/ML
  • 3deeplearning
    • Fast and Deep Deformation Approximations
    • Compress and Denoise MoCap with Autoencoders
    • ‘Fast and Deep Deformation Approximations’ Implementation
    • Running a NeuralNet live in Maya in a Python DG Node
    • Implement a Substance like Normal Map Generator with a Convolutional Network
    • Deploying Neural Nets to the Maya C++ API
  • Tools/Plugins
  • AR/VR
  • Game Engine
  • Rigging
    • Deformer Ideas
    • Research
    • brave rabbit
    • Useful Rigging Links
  • Maya
    • Optimizing Node Graph for Parallel Evaluation
  • Houdini
    • Stuff
    • Popular Built-in VEX Attributes (Global Variables)
Powered by GitBook
On this page
  • 30 Second Elevator Pitch
  • Learn
  • Projects
  • Code Challenge
  • Job Titles & Traps

"Unorganized" Notes

In the words of Steve Jobs, ‘stay hungry and stay foolish’.

NextThe Best Public Datasets for Machine Learning and Data Science

Last updated 1 year ago

Obstacles cannot crush me. Every obstacle leads to stern resolve. He who is fixed to a star does not change his mind.

Leonardo DaVinci

Be brave enough to live life creatively. The creative is the place where no one else has ever been. You have to leave the city of your comfort and go into the wilderness of your intuition. You can’t get there by bus, only by hard work and risk and by not quite knowing what you are doing. What you’ll discover will be wonderful. What you’ll discover will be yourself.

Alan Alda

30 Second Elevator Pitch

As you begin drafting your elevator pitch, here are a few things to focus on:

  • Your background; including the technical aspects of your background where applicable

  • Your transition into your field of study; highlighting why you love it

  • What value you bring

  • What you're building

If you're looking for inspiration, here are a few questions to ask yourself:

  • What am I good at?

  • What problems have I solved?

  • Why do I want to be a [developer/data scientist, etc.]?

  • What was my first exposure to [code/big data, etc.]?

  • What am I passionate about?

  • What was my ‘AHA’ moment to pivot into my new field of study?

I am a Machine Learning Engineer and an accomplished digital production expert. I just finished my training as a Data Scientist at Flatiron School, and I am looking forward to being able to combine my years of experience in computer graphics and my new expertise in machine learning. Right now, I am finishing a small side project using a machine learning technique called GAN to generate new images from a given set of pictures, in my case, mugshots. I believe that machine learning is an invaluable addition to my computer graphics background and would love to be able to combine them in my next job.

I am a Machine Learning Engineer and an accomplished digital production expert. I just finished my training as a Data Scientist at Flatiron School, and I am looking forward to being able to combine my years of experience as a technical lead in computer graphics and my new expertise in machine learning. Right now, I am working on a machine learning project using TensorFlow Graphics. I believe that machine learning is an invaluable addition to my computer graphics background and would love to be able to combine them in my next job.

Prepping for MLE interviews? Develop a T-shaped knowledge base.

Make yourself a stronger candidate by demonstrating broad technical knowledge AND expertise in one area.

  • Be passioned for a specific use case (project) to present

  • Get involved with open source (github):

    • code (fix bugs etc)

    • documentation <<<<

Learn

Projects

Code Challenge

Job Titles & Traps

Intro Machine Learning
Deep Learning
Linear Algebra Refresher Course
Introduction to Algorithms
Probability - The Science of Uncertainty and Data
kaggle
fivethirtyeight
UCI Machine Learning Datasets Repository
openml
Inside AirBnB
Awesome Datasets Repo on Github
codesignal
hackerrank
leetcode
When and How to Use an Elevator PitchThe Balance Careers
Chris Albon
Technical Notes On Using Data Science & Artificial Intelligence
Logo
Logo