scrapbook
  • "Unorganized" Notes
  • The Best Public Datasets for Machine Learning and Data Science
  • Practice Coding
  • plaid-API project
  • Biotech
    • Machine Learning vs. Deep Learning
  • Machine Learning for Computer Graphics
  • Books (on GitHub)
  • Ideas/Thoughts
  • Ziva for feature animation: Stylized simulation and machine learning-ready workflows
  • Tools
  • 🪶math
    • Papers
    • Math for ML (coursera)
      • Linear Algebra
        • Wk1
        • Wk2
        • Wk3
        • Wk4
        • Wk5
      • Multivariate Calculus
    • Improving your Algorithms & Data Structure Skills
    • Algorithms
    • Algorithms (MIT)
      • Lecture 1: Algorithmic Thinking, Peak Finding
    • Algorithms (khan academy)
      • Binary Search
      • Asymptotic notation
      • Sorting
      • Insertion sort
      • Recursion
      • Solve Hanoi recursively
      • Merge Sort
      • Representing graphs
      • The breadth-first search algorithm
      • Breadth First Search in JavaScript
      • Breadth-first vs Depth-first Tree Traversal in Javascript
    • Algorithms (udacity)
      • Social Network
    • Udacity
      • Linear Algebra Refresher /w Python
    • math-notes
      • functions
      • differential calculus
      • derivative
      • extras
      • Exponentials & logarithms
      • Trigonometry
    • Probability (MIT)
      • Unit 1
        • Probability Models and Axioms
        • Mathematical background: Sets; sequences, limits, and series; (un)countable sets.
    • Statistics and probability (khan academy)
      • Analyzing categorical data
      • Describing and comparing distributions
      • Outliers Definition
      • Mean Absolute Deviation (MAD)
      • Modeling data distribution
      • Exploring bivariate numerical data
      • Study Design
      • Probability
      • Counting, permutations, and combinations
      • Binomial variables
        • Binomial Distribution
        • Binomial mean and standard deviation formulas
        • Geometric random variable
      • Central Limit Theorem
      • Significance Tests (hypothesis testing)
    • Statistics (hackerrank)
      • Mean, Medium, Mode
      • Weighted Mean
      • Quartiles
      • Standard Deviation
      • Basic Probability
      • Conditional Probability
      • Permutations & Combinations
      • Binomial Distribution
      • Negative Binomial
      • Poisson Distribution
      • Normal Distribution
      • Central Limit Theorem
      • Important Concepts in Bayesian Statistics
  • 📽️PRODUCT
    • Product Strategy
    • Product Design
    • Product Development
    • Product Launch
  • 👨‍💻coding
    • of any interest
    • Maya API
      • Python API
    • Python
      • Understanding Class Inheritance in Python 3
      • 100+ Python challenging programming exercises
      • coding
      • Iterables vs. Iterators vs. Generators
      • Generator Expression
      • Stacks (LIFO) / Queues (FIFO)
      • What does -1 mean in numpy reshape?
      • Fold Left and Right in Python
      • Flatten a nested list of lists
      • Flatten a nested dictionary
      • Traverse A Tree
      • How to Implement Breadth-First Search
      • Breadth First Search
        • Level Order Tree Traversal
        • Breadth First Search or BFS for a Graph
        • BFS for Disconnected Graph
      • Trees and Tree Algorithms
      • Graph and its representations
      • Graph Data Structure Interview Questions
      • Graphs in Python
      • GitHub Repo's
    • Python in CG Production
    • GLSL/HLSL Shading programming
    • Deep Learning Specialization
      • Neural Networks and Deep Learning
      • Untitled
      • Untitled
      • Untitled
    • TensorFlow for AI, ML, and DL
      • Google ML Crash Course
      • TensorFlow C++ API
      • TensorFlow - coursera
      • Notes
      • An Introduction to different Types of Convolutions in Deep Learning
      • One by One [ 1 x 1 ] Convolution - counter-intuitively useful
      • SqueezeNet
      • Deep Compression
      • An Overview of ResNet and its Variants
      • Introducing capsule networks
      • What is a CapsNet or Capsule Network?
      • Xception
      • TensorFlow Eager
    • GitHub
      • Project README
    • Agile - User Stories
    • The Open-Source Data Science Masters
    • Coding Challenge Websites
    • Coding Interview
      • leetcode python
      • Data Structures
        • Arrays
        • Linked List
        • Hash Tables
        • Trees: Basic
        • Heaps, Stacks, Queues
        • Graphs
          • Shortest Path
      • Sorting & Searching
        • Depth-First Search & Breadth-First Search
        • Backtracking
        • Sorting
      • Dynamic Programming
        • Dynamic Programming: Basic
        • Dynamic Programming: Advanced
    • spaCy
    • Pandas
    • Python Packages
    • Julia
      • jupyter
    • macos
    • CPP
      • Debugging
      • Overview of memory management problems
      • What are lvalues and rvalues?
      • The Rule of Five
      • Concurrency
      • Avoiding Data Races
      • Mutex
      • The Monitor Object Pattern
      • Lambdas
      • Maya C++ API Programming Tips
      • How can I read and parse CSV files in C++?
      • Cpp NumPy
    • Advanced Machine Learning
      • Wk 1
      • Untitled
      • Untitled
      • Untitled
      • Untitled
  • data science
    • Resources
    • Tensorflow C++
    • Computerphile
      • Big Data
    • Google ML Crash Course
    • Kaggle
      • Data Versioning
      • The Basics of Rest APIs
      • How to Make an API
      • How to deploying your API
    • Jupiter Notebook Tips & Tricks
      • Jupyter
    • Image Datasets Notes
    • DS Cheatsheets
      • Websites & Blogs
      • Q&A
      • Strata
      • Data Visualisation
      • Matplotlib etc
      • Keras
      • Spark
      • Probability
      • Machine Learning
        • Fast Computation of AUC-ROC score
    • Data Visualisation
    • fast.ai
      • deep learning
      • How to work with Jupyter Notebook on a remote machine (Linux)
      • Up and Running With Fast.ai and Docker
      • AWS
    • Data Scientist
    • ML for Beginners (Video)
    • ML Mastery
      • Machine Learning Algorithms
      • Deep Learning With Python
    • Linear algebra cheat sheet for deep learning
    • DL_ML_Resources
    • Awesome Machine Learning
    • web scraping
    • SQL Style Guide
    • SQL - Tips & Tricks
  • 💡Ideas & Thoughts
    • Outdoors
    • Blog
      • markdown
      • How to survive your first day as an On-set VFX Supervisor
    • Book Recommendations by Demi Lee
  • career
    • Skills
    • learn.co
      • SQL
      • Distribution
      • Hypothesis Testing Glossary
      • Hypothesis Tests
      • Hypothesis & AB Testing
      • Combinatorics Continued and Maximum Likelihood Estimation
      • Bayesian Classification
      • Resampling and Monte Carlo Simulation
      • Extensions To Linear Models
      • Time Series
      • Distance Metrics
      • Graph Theory
      • Logistic Regression
      • MLE (Maximum Likelihood Estimation)
      • Gradient Descent
      • Decision Trees
      • Ensemble Methods
      • Spark
      • Machine Learning
      • Deep Learning
        • Backpropagation - math notation
        • PRACTICE DATASETS
        • Big Data
      • Deep Learning Resources
      • DL Datasets
      • DL Tutorials
      • Keras
      • Word2Vec
        • Word2Vec Tutorial Part 1 - The Skip-Gram Model
        • Word2Vec Tutorial Part 2 - Negative Sampling
        • An Intuitive Explanation of Convolutional Neural Networks
      • Mod 4 Project
        • Presentation
      • Mod 5 Project
      • Capstone Project Notes
        • Streaming large training and test files into Tensorflow's DNNClassifier
    • Carrier Prep
      • The Job Search
        • Building a Strong Job Search Foundation
        • Key Traits of Successful Job Seekers
        • Your Job Search Mindset
        • Confidence
        • Job Search Action Plan
        • CSC Weekly Activity
        • Managing Your Job Search
      • Your Online Presence
        • GitHub
      • Building Your Resume
        • Writing Your Resume Summary
        • Technical Experience
      • Effective Networking
        • 30 Second Elevator Pitch
        • Leveraging Your Network
        • Building an Online Network
        • Linkedin For Research And Networking
        • Building An In-Person Network
        • Opening The Line Of Communication
      • Applying to Jobs
        • Applying To Jobs Online
        • Cover Letters
      • Interviewing
        • Networking Coffees vs Formal Interviews
        • The Coffee Meeting/ Informational Interview
        • Communicating With Recruiters And HR Professional
        • Research Before an Interview
        • Preparing Questions for Interviews
        • Phone And Video/Virtual Interviews
        • Cultural/HR Interview Questions
        • The Salary Question
        • Talking About Apps/Projects You Built
        • Sending Thank You's After an Interview
      • Technical Interviewing
        • Technical Interviewing Formats
        • Code Challenge Best Practices
        • Technical Interviewing Resources
      • Communication
        • Following Up
        • When You Haven't Heard From an Employer
      • Job Offers
        • Approaching Salary Negotiations
      • Staying Current in the Tech Industry
      • Module 6 Post Work
      • Interview Prep
  • projects
    • Text Classification
    • TERRA-REF
    • saildrone
  • Computer Graphics
  • AI/ML
  • 3deeplearning
    • Fast and Deep Deformation Approximations
    • Compress and Denoise MoCap with Autoencoders
    • ‘Fast and Deep Deformation Approximations’ Implementation
    • Running a NeuralNet live in Maya in a Python DG Node
    • Implement a Substance like Normal Map Generator with a Convolutional Network
    • Deploying Neural Nets to the Maya C++ API
  • Tools/Plugins
  • AR/VR
  • Game Engine
  • Rigging
    • Deformer Ideas
    • Research
    • brave rabbit
    • Useful Rigging Links
  • Maya
    • Optimizing Node Graph for Parallel Evaluation
  • Houdini
    • Stuff
    • Popular Built-in VEX Attributes (Global Variables)
Powered by GitBook
On this page
  • Leadership Principles
  • Behavioral-based questions:
  • STAR
  • Tips for answers
  1. career
  2. Carrier Prep

Interview Prep

Leadership Principles

Customer Obsession

Leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. Although leaders pay attention to competitors, they obsess over customers.

Ownership

Leaders are owners. They think long term and don’t sacrifice long-term value for short-term results. They act on behalf of the entire company, beyond just their own team. They never say “that’s not my job".

Invent and Simplify

Leaders expect and require innovation and invention from their teams and always find ways to simplify. They are externally aware, look for new ideas from everywhere, and are not limited by “not invented here". As we do new things, we accept that we may be misunderstood for long periods of time.

Are right, A Lot

Leaders are right a lot. They have strong judgment and good instincts. They seek diverse perspectives and work to disconfirm their beliefs.

Learn and Be Curious

Leaders are never done learning and always seek to improve themselves. They are curious about new possibilities and act to explore them.

Hire and Develop the Best

Leaders raise the performance bar with every hire and promotion. They recognize exceptional talent, and willingly move them throughout the organization. Leaders develop leaders and take seriously their role in coaching others. We work on behalf of our people to invent mechanisms for development like Career Choice.

Insist on the Highest Standards

Leaders have relentlessly high standards - many people may think these standards are unreasonably high. Leaders are continually raising the bar and driving their teams to deliver high quality products, services and processes. Leaders ensure that defects do not get sent down the line and that problems are fixed so they stay fixed.

Think Big

Thinking small is a self-fulfilling prophecy. Leaders create and communicate a bold direction that inspires results. They think differently and look around corners for ways to serve customers.

Bias for Action

Speed matters in business. Many decisions and actions are reversible and do not need extensive study. We value calculated risk taking.

Frugality

Accomplish more with less. Constraints breed resourcefulness, self-sufficiency and invention. There are no extra points for growing headcount, budget size or fixed expense.

Earn Trust

Leaders listen attentively, speak candidly, and treat others respectfully. They are vocally self-critical, even when doing so is awkward or embarrassing. Leaders do not believe their or their team’s body odor smells of perfume. They benchmark themselves and their teams against the best.

Dive Deep

Leaders operate at all levels, stay connected to the details, audit frequently, and are skeptical when metrics and anecdote differ. No task is beneath them.

Have Backbone; Disagree and Commit

Leaders are obligated to respectfully challenge decisions when they disagree, even when doing so is uncomfortable or exhausting. Leaders have conviction and are tenacious. They do not compromise for the sake of social cohesion. Once a decision is determined, they commit wholly.

Deliver Results

Leaders focus on the key inputs for their business and deliver them with the right quality and in a timely fashion. Despite setbacks, they rise to the occasion and never settle.

Behavioral-based questions:

  • Tell me about a time when you were faced with a problem that had a number of possible solutions. What was the problem and how did you determine the course of action? What was the outcome of that choice?

  • When did you take a risk, make a mistake, or fail? How did you respond, and how did you grow from that experience?

  • Describe a time you took the lead on a project.

  • What did you do when you needed to motivate a group of individuals or promote collaboration on a particular project?

  • How have you leveraged data to develop a strategy?

STAR

The STAR method is a structured manner of responding to a behavioral-based interview question by discussing the specific situation, task, action, and result of what you're describing. Here’s what it looks like:

SITUATION

Describe the situation that you were in, or the task that you needed to accomplish. Give enough detail for the interviewer to understand the complexities of the situation. This example can be from a previous job, school project, volunteer activity, or any relevant event.

TASK

What goal were you working toward?

ACTION

Describe the actions you took to address the situation with an appropriate amount of detail, and keep the focus on you. What specific steps did you take? What was your particular contribution? Be careful that you don’t describe what the team or group did when talking about a project. Let us know what you actually did. Use the word “I,” not “we,” when describing actions.

RESULT

Describe the outcome of your actions and don’t be shy about taking credit for your behavior. What happened? How did the event end? What did you accomplish? What did you learn? Provide examples using metrics or data if applicable.

Consider your own successes and failures in relation to the Leadership Principles. Have specific examples that showcase your expertise, and demonstrate how you’ve taken risks, succeeded, failed and grown in the process. Keep in mind, some of Amazon’s most successful programs have risen from the ashes of failed projects. Failure is a necessary part of innovation. It’s not optional. We understand that and believe in failing early and iterating until we get it right.

Tips for answers

  • Practice using the STAR method to answer the behavioral-based interview questions listed above, incorporating examples from the Amazon Leadership Principles.

  • Ensure each answer has a beginning, middle, and end. Describe the situation or problem, the actions you took, and the outcome.

  • Prepare short descriptions of a handful of different situations and be ready to answer follow-up questions with greater detail. Select examples that highlight your unique skills.

  • Have specific examples that showcase your experience, and demonstrate that you’ve taken risks, succeeded, failed and grown in the process.

  • Specifics are key; avoid generalizations. Give a detailed account of one situation for each question you answer, and use data or metrics to support your example.

  • Be forthcoming and straightforward. Don't embellish or omit parts of the story.

PreviousModule 6 Post WorkNextText Classification

Last updated 5 years ago