Geometric random variable

Binomial Random Variable

X = # of 6's after 12 rolls of fair die

  • trial outcome success or failure

  • trial results independent

  • fixed # of trials

  • same probability on each trial

Geometric Random Variable

Y = # of rolls until get 6 on fair die

  • NO fixed # of trials -> How many trials until success?

Example:

Caterina scans animals brought to the shelter to check for microchips that will help locate their owners. There is a 0.050.05 probability that a stray dog brought to the shelter will have a microchip. Let DD be the number of stray dogs Caterina scans until she finds one with a microchip. Assume the probability of each dog having a microchip is independent.

Find the probability that the 4th4^{\text{th}} dog Caterina scans will be the first to have a microchip.

P(D=4)=(1āˆ’0.05)3ā‹…0.05=0.04P(D=4) = (1-0.05)^3 \cdot 0.05 = 0.04

Cumulative geometric probability (greater than a value)

P(V>4)=P(V=5)+P(V=6)+P(V=7)+....P(V>4)=P(V=5)+P(V=6)+P(V=7)+....

same as

P(Vnotā‰¤4)=P(firstĀ 4Ā carsĀ notĀ SUVs)=(0.88)4=0.5997P(V \text{not} \leq 4) = P(\text{first 4 cars not SUVs}) = (0.88)^4 = 0.5997

Quiz

Jeremiah makes 25%25\% of the three-point shots he attempts. For a warm up, Jeremiah likes to shoot three-point shots until he makes one. Let MM be the number of shots it takes Jeremiah to make his first three-point shot. Assume that the results of each shot are independent.

Find the probability that it takes Jeremiah fewer than 44 attempts to make his first shot.

  1. On each shot:

    P(make)=0.25PP(\blueD{\text{make}})=0.25P

    P(miss)=0.75PP(\purpleD{\text{miss}})=0.75P(

    If it takes Jeremiah fewer than 444 attempts to make his first shot, here are the possible sequences of shots:

    • make

    • miss, make

    • miss, miss, make

    We can find the probability of each sequence and add those probabilities together.

  2. P(make)=0.25P(miss,make)=(0.75)(0.25)=0.1875P(miss,miss,make)=(0.75)(0.75)(0.25)=0.140625P(M<4)=0.25+0.1875+0.140625=0.578125P(make) =0.25\newline P(miss, make) =(0.75)(0.25) = 0.1875 \newline P(miss, miss, make) = (0.75)(0.75)(0.25) = 0.140625\newline P(M<4) = 0.25 + 0.1875 + 0.140625 = 0.578125

  3. We could also find the probability that M<4M<4 by taking the complement of the probability that he missed the first 33.

    P(M<4)=1āˆ’P(missedĀ 3)=1āˆ’(0.75)3=1āˆ’0.421875=0.578125\begin{aligned} P(M<4) &= 1-P(\text{missed }3)\\\\ &=1-(\purpleD{0.75})^3 \\\\ &=1-0.421875\\\\ &=0.578125 \end{aligned}

Quiz

Anand knows from experience that if he does not review a new vocabulary word that he has learned, that he has a 70%70\% chance of forgetting it each day. Let DD be the number of days Anand goes without reviewing a word until he forgets it.

Find the probability that it takes Anand 44 or more days to forget the word.

On each day:

P(forget)=0.7P(\blueD{\text{forget}})=0.7 P(remember)=0.3P(\purpleD{\text{remember}})=0.3

If it takes Anand 44 or more days to forget the word, then he must remember for each of the first 33 days.

P(Dā‰„4)=P(rememberĀ firstĀ 3)=(0.3)3=0.027\begin{aligned} P(D\geq 4)&=P(\text{remember first 3}) \\\\ &=(\purpleD{0.3})^3 \\\\ &= 0.027 \end{aligned}

Last updated