scrapbook
  • "Unorganized" Notes
  • The Best Public Datasets for Machine Learning and Data Science
  • Practice Coding
  • plaid-API project
  • Biotech
    • Machine Learning vs. Deep Learning
  • Machine Learning for Computer Graphics
  • Books (on GitHub)
  • Ideas/Thoughts
  • Ziva for feature animation: Stylized simulation and machine learning-ready workflows
  • Tools
  • 🪶math
    • Papers
    • Math for ML (coursera)
      • Linear Algebra
        • Wk1
        • Wk2
        • Wk3
        • Wk4
        • Wk5
      • Multivariate Calculus
    • Improving your Algorithms & Data Structure Skills
    • Algorithms
    • Algorithms (MIT)
      • Lecture 1: Algorithmic Thinking, Peak Finding
    • Algorithms (khan academy)
      • Binary Search
      • Asymptotic notation
      • Sorting
      • Insertion sort
      • Recursion
      • Solve Hanoi recursively
      • Merge Sort
      • Representing graphs
      • The breadth-first search algorithm
      • Breadth First Search in JavaScript
      • Breadth-first vs Depth-first Tree Traversal in Javascript
    • Algorithms (udacity)
      • Social Network
    • Udacity
      • Linear Algebra Refresher /w Python
    • math-notes
      • functions
      • differential calculus
      • derivative
      • extras
      • Exponentials & logarithms
      • Trigonometry
    • Probability (MIT)
      • Unit 1
        • Probability Models and Axioms
        • Mathematical background: Sets; sequences, limits, and series; (un)countable sets.
    • Statistics and probability (khan academy)
      • Analyzing categorical data
      • Describing and comparing distributions
      • Outliers Definition
      • Mean Absolute Deviation (MAD)
      • Modeling data distribution
      • Exploring bivariate numerical data
      • Study Design
      • Probability
      • Counting, permutations, and combinations
      • Binomial variables
        • Binomial Distribution
        • Binomial mean and standard deviation formulas
        • Geometric random variable
      • Central Limit Theorem
      • Significance Tests (hypothesis testing)
    • Statistics (hackerrank)
      • Mean, Medium, Mode
      • Weighted Mean
      • Quartiles
      • Standard Deviation
      • Basic Probability
      • Conditional Probability
      • Permutations & Combinations
      • Binomial Distribution
      • Negative Binomial
      • Poisson Distribution
      • Normal Distribution
      • Central Limit Theorem
      • Important Concepts in Bayesian Statistics
  • 📽️PRODUCT
    • Product Strategy
    • Product Design
    • Product Development
    • Product Launch
  • 👨‍💻coding
    • of any interest
    • Maya API
      • Python API
    • Python
      • Understanding Class Inheritance in Python 3
      • 100+ Python challenging programming exercises
      • coding
      • Iterables vs. Iterators vs. Generators
      • Generator Expression
      • Stacks (LIFO) / Queues (FIFO)
      • What does -1 mean in numpy reshape?
      • Fold Left and Right in Python
      • Flatten a nested list of lists
      • Flatten a nested dictionary
      • Traverse A Tree
      • How to Implement Breadth-First Search
      • Breadth First Search
        • Level Order Tree Traversal
        • Breadth First Search or BFS for a Graph
        • BFS for Disconnected Graph
      • Trees and Tree Algorithms
      • Graph and its representations
      • Graph Data Structure Interview Questions
      • Graphs in Python
      • GitHub Repo's
    • Python in CG Production
    • GLSL/HLSL Shading programming
    • Deep Learning Specialization
      • Neural Networks and Deep Learning
      • Untitled
      • Untitled
      • Untitled
    • TensorFlow for AI, ML, and DL
      • Google ML Crash Course
      • TensorFlow C++ API
      • TensorFlow - coursera
      • Notes
      • An Introduction to different Types of Convolutions in Deep Learning
      • One by One [ 1 x 1 ] Convolution - counter-intuitively useful
      • SqueezeNet
      • Deep Compression
      • An Overview of ResNet and its Variants
      • Introducing capsule networks
      • What is a CapsNet or Capsule Network?
      • Xception
      • TensorFlow Eager
    • GitHub
      • Project README
    • Agile - User Stories
    • The Open-Source Data Science Masters
    • Coding Challenge Websites
    • Coding Interview
      • leetcode python
      • Data Structures
        • Arrays
        • Linked List
        • Hash Tables
        • Trees: Basic
        • Heaps, Stacks, Queues
        • Graphs
          • Shortest Path
      • Sorting & Searching
        • Depth-First Search & Breadth-First Search
        • Backtracking
        • Sorting
      • Dynamic Programming
        • Dynamic Programming: Basic
        • Dynamic Programming: Advanced
    • spaCy
    • Pandas
    • Python Packages
    • Julia
      • jupyter
    • macos
    • CPP
      • Debugging
      • Overview of memory management problems
      • What are lvalues and rvalues?
      • The Rule of Five
      • Concurrency
      • Avoiding Data Races
      • Mutex
      • The Monitor Object Pattern
      • Lambdas
      • Maya C++ API Programming Tips
      • How can I read and parse CSV files in C++?
      • Cpp NumPy
    • Advanced Machine Learning
      • Wk 1
      • Untitled
      • Untitled
      • Untitled
      • Untitled
  • data science
    • Resources
    • Tensorflow C++
    • Computerphile
      • Big Data
    • Google ML Crash Course
    • Kaggle
      • Data Versioning
      • The Basics of Rest APIs
      • How to Make an API
      • How to deploying your API
    • Jupiter Notebook Tips & Tricks
      • Jupyter
    • Image Datasets Notes
    • DS Cheatsheets
      • Websites & Blogs
      • Q&A
      • Strata
      • Data Visualisation
      • Matplotlib etc
      • Keras
      • Spark
      • Probability
      • Machine Learning
        • Fast Computation of AUC-ROC score
    • Data Visualisation
    • fast.ai
      • deep learning
      • How to work with Jupyter Notebook on a remote machine (Linux)
      • Up and Running With Fast.ai and Docker
      • AWS
    • Data Scientist
    • ML for Beginners (Video)
    • ML Mastery
      • Machine Learning Algorithms
      • Deep Learning With Python
    • Linear algebra cheat sheet for deep learning
    • DL_ML_Resources
    • Awesome Machine Learning
    • web scraping
    • SQL Style Guide
    • SQL - Tips & Tricks
  • 💡Ideas & Thoughts
    • Outdoors
    • Blog
      • markdown
      • How to survive your first day as an On-set VFX Supervisor
    • Book Recommendations by Demi Lee
  • career
    • Skills
    • learn.co
      • SQL
      • Distribution
      • Hypothesis Testing Glossary
      • Hypothesis Tests
      • Hypothesis & AB Testing
      • Combinatorics Continued and Maximum Likelihood Estimation
      • Bayesian Classification
      • Resampling and Monte Carlo Simulation
      • Extensions To Linear Models
      • Time Series
      • Distance Metrics
      • Graph Theory
      • Logistic Regression
      • MLE (Maximum Likelihood Estimation)
      • Gradient Descent
      • Decision Trees
      • Ensemble Methods
      • Spark
      • Machine Learning
      • Deep Learning
        • Backpropagation - math notation
        • PRACTICE DATASETS
        • Big Data
      • Deep Learning Resources
      • DL Datasets
      • DL Tutorials
      • Keras
      • Word2Vec
        • Word2Vec Tutorial Part 1 - The Skip-Gram Model
        • Word2Vec Tutorial Part 2 - Negative Sampling
        • An Intuitive Explanation of Convolutional Neural Networks
      • Mod 4 Project
        • Presentation
      • Mod 5 Project
      • Capstone Project Notes
        • Streaming large training and test files into Tensorflow's DNNClassifier
    • Carrier Prep
      • The Job Search
        • Building a Strong Job Search Foundation
        • Key Traits of Successful Job Seekers
        • Your Job Search Mindset
        • Confidence
        • Job Search Action Plan
        • CSC Weekly Activity
        • Managing Your Job Search
      • Your Online Presence
        • GitHub
      • Building Your Resume
        • Writing Your Resume Summary
        • Technical Experience
      • Effective Networking
        • 30 Second Elevator Pitch
        • Leveraging Your Network
        • Building an Online Network
        • Linkedin For Research And Networking
        • Building An In-Person Network
        • Opening The Line Of Communication
      • Applying to Jobs
        • Applying To Jobs Online
        • Cover Letters
      • Interviewing
        • Networking Coffees vs Formal Interviews
        • The Coffee Meeting/ Informational Interview
        • Communicating With Recruiters And HR Professional
        • Research Before an Interview
        • Preparing Questions for Interviews
        • Phone And Video/Virtual Interviews
        • Cultural/HR Interview Questions
        • The Salary Question
        • Talking About Apps/Projects You Built
        • Sending Thank You's After an Interview
      • Technical Interviewing
        • Technical Interviewing Formats
        • Code Challenge Best Practices
        • Technical Interviewing Resources
      • Communication
        • Following Up
        • When You Haven't Heard From an Employer
      • Job Offers
        • Approaching Salary Negotiations
      • Staying Current in the Tech Industry
      • Module 6 Post Work
      • Interview Prep
  • projects
    • Text Classification
    • TERRA-REF
    • saildrone
  • Computer Graphics
  • AI/ML
  • 3deeplearning
    • Fast and Deep Deformation Approximations
    • Compress and Denoise MoCap with Autoencoders
    • ‘Fast and Deep Deformation Approximations’ Implementation
    • Running a NeuralNet live in Maya in a Python DG Node
    • Implement a Substance like Normal Map Generator with a Convolutional Network
    • Deploying Neural Nets to the Maya C++ API
  • Tools/Plugins
  • AR/VR
  • Game Engine
  • Rigging
    • Deformer Ideas
    • Research
    • brave rabbit
    • Useful Rigging Links
  • Maya
    • Optimizing Node Graph for Parallel Evaluation
  • Houdini
    • Stuff
    • Popular Built-in VEX Attributes (Global Variables)
Powered by GitBook
On this page
  • Simple Answer
  • Complex Answer
  • More Uses
  1. coding
  2. TensorFlow for AI, ML, and DL

One by One [ 1 x 1 ] Convolution - counter-intuitively useful

PreviousAn Introduction to different Types of Convolutions in Deep LearningNextSqueezeNet

Last updated 6 years ago

Whenever I discuss or show , one question always comes up - "Why 1x1 convolution ? Is it not redundant ?

left : **Convolution with kernel of size 3x3** right : **Convolution with kernel of size 1x1**

Simple Answer

Most simplistic explanation would be that 1x1 convolution leads to dimension reductionality. For example, an image of 200 x 200 with 50 features on convolution with 20 filters of 1x1 would result in size of 200 x 200 x 20. But then again, is this is the best way to do dimensionality reduction in the convoluational neural network? What about the efficacy vs efficiency?

Complex Answer

Feature transformation

Although 1x1 convolution is a ‘feature pooling’ technique, there is more to it than just sum pooling of features across various channels/feature-maps of a given layer. 1x1 convolution acts like coordinate-dependent transformation in the filter space[]. It is important to note here that this transformation is strictly linear, but in most of application of 1x1 convolution, it is succeeded by a non-linear activation layer like ReLU. This transformation is learned through the (stochastic) gradient descent. But an important distinction is that it suffers with less over-fitting due to smaller kernel size (1x1).

Deeper Network

One by One convolution was first introduced in this paper titled . In this paper, the author’s goal was to generate a deeper network without simply stacking more layers. It replaces few filters with a smaller perceptron layer with mixture of 1x1 and 3x3 convolutions. In a way, it can be seen as “going wide” instead of “deep”, but it should be noted that in machine learning terminology, ‘going wide’ is often meant as adding more data to the training. Combination of 1x1 (x F) convolution is mathematically equivalent to a multi-layer perceptron.[].

Inception Module

In GoogLeNet architecture, 1x1 convolution is used for two purposes

  • To make network deep by adding an “inception module” like Network in Network paper, as described above.

  • To reduce the dimensions inside this “inception module”.

  • To add more non-linearity by having ReLU immediately after every 1x1 convolution.

Here is the scresnshot from the paper, which elucidates above points :

1x1 convolutions in GoogLeNet

It can be seen from the image on the right, that 1x1 convolutions (in yellow), are specially used before 3x3 and 5x5 convolution to reduce the dimensions. It should be noted that a two step convolution operation can always to combined into one, but in this case and in most other deep learning networks, convolutions are followed by non-linear activation and hence convolutions are no longer linear operators and cannot be combined.

In designing such a network, it is important to note that initial convolution kernel should be of size larger than 1x1 to have a receptive field capable of capturing locally spatial information. According to the NIN paper, 1x1 convolution is equivalent to cross-channel parametric pooling layer. From the paper - “This cascaded cross channel parameteric pooling structure allows complex and learnable interactions of cross channel information”.

Cross channel information learning (cascaded 1x1 convolution) is biologically inspired because human visual cortex have receptive fields (kernels) tuned to different orientation. For e.g

More Uses

  • 1x1 Convolution can be combined with Max pooling

Pooling with 1x1 convolution

  • 1x1 Convolution with higher strides leads to even more redution in data by decreasing resolution, while losing very little non-spatially correlated information.

1x1 convolution with strides

  • Replace fully connected layers with 1x1 convolutions as Yann LeCun believes they are the same -

1x1 convolutions in GoogLeNet
different orientation tuned receptive field profiles in the human visual cortex

Different orientation tuned receptive field profiles in the human visual cortex

Pooling with 1x1 convolution
1x1 convolution with strides

In Convolutional Nets, there is no such thing as “fully-connected layers”. There are only convolution layers with 1x1 convolution kernels and a full connection table. –

Convolution gif images generated using , more images on 1x1 convolutions and 3x3 convolutions can be

👨‍💻
Source
Yann LeCun
this wonderful code
found here
GoogleNet architecture
1
Network in Network
2
Convolution with Kernel of size 3x3
Convolution with Kernel of size 1x1